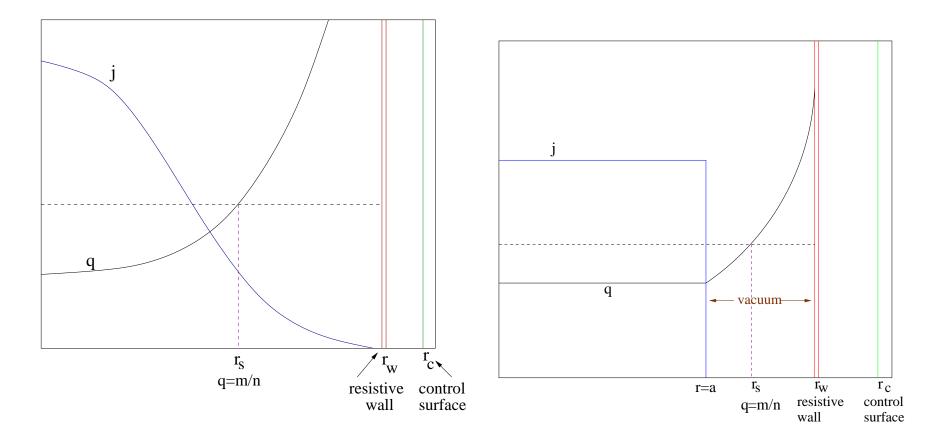
Feedback stabilization of tearing modes in RFPs with a resistive wall ABOVE the ideal wall limit

JOHN M. FINN, LANL

GIAN LUCA DELZANNO, LANL

*J. M. Finn, "Control of magnetohydrodynamic modes with a resistive wall above the wall stabilization limit", *Phys. Plasmas* **13**, 082504 (2006).

Background


- Known: resistive wall modes can be unstable when PC wall stabilizes
- Earlier work: feedback: sensing \widetilde{B}_r or \widetilde{B}_{θ} (normal or tangential)
- Tokamaks or RFPs increasing or decreasing q(r) profile
- New: we sense a linear combination of \widetilde{B}_r and \widetilde{B}_{θ}
- New: stability of *tearing modes* is possible **ABOVE** the wall stabilization regime. For *ideal* modes? No.
- Related to *virtual wall* of Bishop (1989)? For $Re(\omega) = 0$, sort of. Otherwise, no.
- Applications: stabilizing the m = 0 or the m = 1 modes in RFPs for single RFPs; possibly control the amplitude of neoclasical tearing modes in tokamaks.

RADIAL AND TANGENTIAL SENSING (REVIEW)

- ✓ Tangential (\tilde{B}_{θ}) sensing was found to work better than radial (\tilde{B}_{r}) sensing [Y. Q. Liu, A. Bondeson et al., *Phys. Plasmas* **2000**; C. M. Fransson et al., *Phys. Plasmas* **2000**; A. Bondeson et al., *Nucl. Fusion* **2002**; M. S. Chu et al., *Nucl. Fusion* **2003**; M. S. Chu et al., *Phys. Plasmas* **2004**, J. M. Finn, *Phys. Plasmas* **2004**].
- ✓ Tangential appears to work better because it is less sensitive to $m \to m \pm 1$ coupling due to coils
- ✔ Works better in DIII-D too.

MODEL

X Cylindrical tokamak model, reduced ($R/a \gg 1$) resistive MHD equations, resistive wall (RW) at plasma edge, control flux (single m, n) applied at r_c

Resistive wall tearing mode – reduced MHD

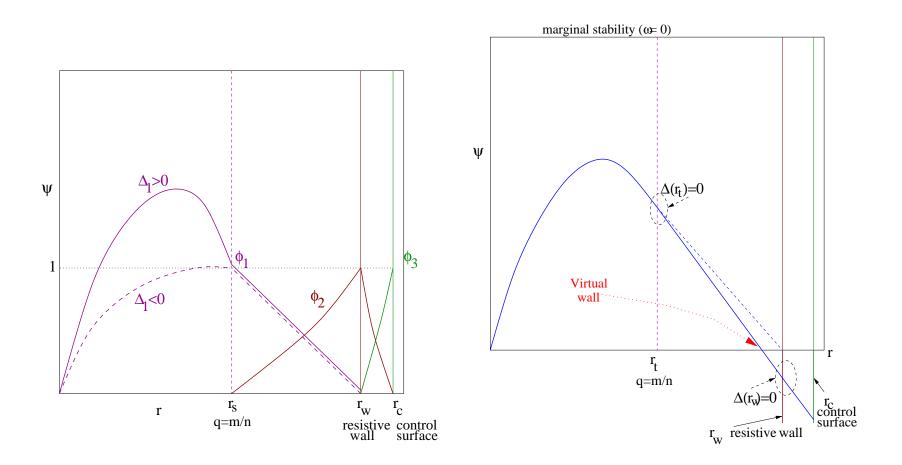
$$\mathbf{B} = \nabla \psi \times \widehat{z} + B_0 \widehat{z} \quad \mathbf{j} = j_z \widehat{z} = -\nabla_{\perp}^2 \psi$$
$$\mathbf{B} \cdot \nabla \widetilde{j_z} + \widetilde{\mathbf{B}} \cdot \nabla j_z = \rho d\omega/dt \qquad \nabla_{\perp}^2 \widetilde{\psi} - \frac{m}{r} \frac{j'_z}{\mathbf{k} \cdot \mathbf{B}} \widetilde{\psi} = 0 \quad vac.$$

Matching at $r = r_s$ (q = m/n) – visco-resistive *ct.* psi tearing matching condition:

$$[\psi']_{r_t} = \gamma \tau_t \psi(r_t) \quad \tau_t \sim \mu^{1/6} / \eta_p^{5/6} (k \cdot B)'^{1/3}$$

Matching at $r = r_w$ – resistive wall – thin wall (ct. psi) matching condition:

$$\left[\psi'\right]_{r_w} = \gamma \tau_w \psi(r_w) \quad \tau_w \sim r_w \delta/\eta_w$$

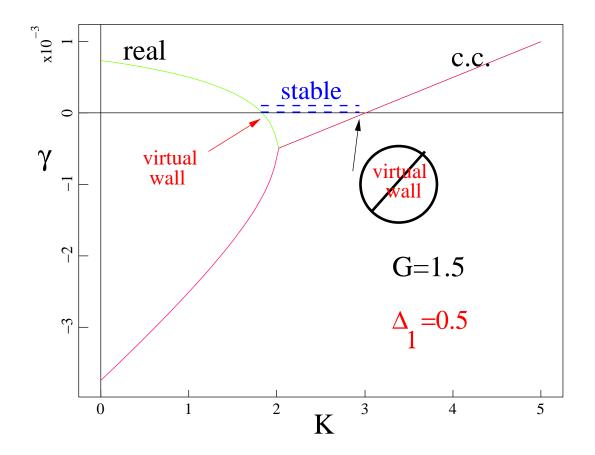

FEEDBACK MODEL

Feedback – linear combination of radial field $\psi(r_c) = -G\psi(r_w)$ and poloidal field $\psi(r_c) = K\psi'(r_w-)$ [$\tilde{B}_r = im\psi/r$; $\tilde{B}_{\theta} = -\partial\psi/\partial r$]

$$\psi(r_c) = -G\psi(r_w) + K\psi'(r_w -) \leftarrow -$$

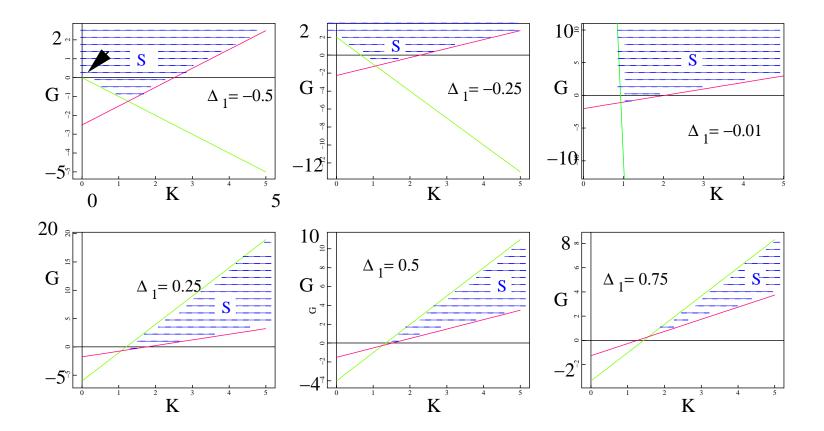
$$\widetilde{B}_r(r_w) \propto \psi(r_w) \ \dots \ \widetilde{B}_{\theta}(r_w-) \propto \psi'(r_w-)$$

RW TM (cont)

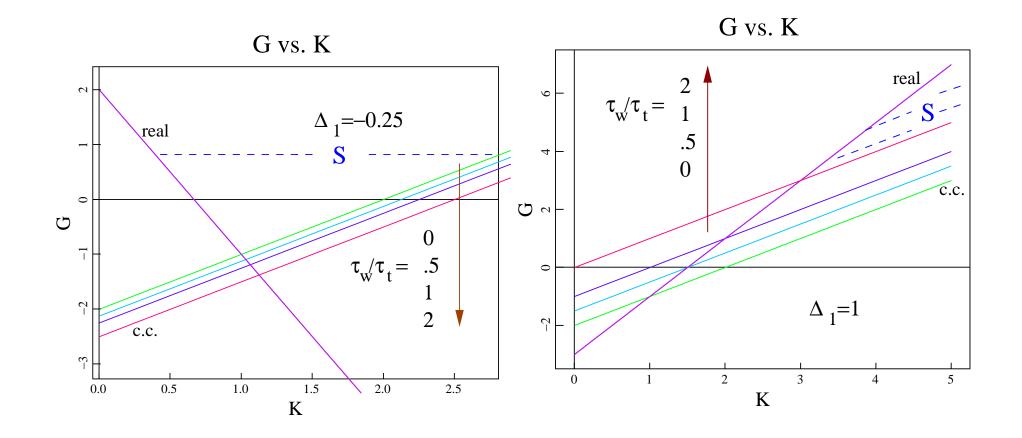

 $\Delta_1 < 0 \implies$ TM is stable with PC (perfectly conducting) wall at r_w

 $\Delta_1 > 0 \implies \text{TM} \text{ is unstable with PC wall at } r_w$

$$\begin{bmatrix} \Delta_1 - \gamma \tau_t & l_{12} & 0 \\ l_{21} & \Delta_2 - \gamma \tau_w & l_{23} \\ -Kl_{21} & -G + Kl_{22}^{(-)} & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = 0$$


$$\begin{bmatrix} \frac{\Delta_1}{\tau_t} - \gamma & \frac{l_{12}}{\tau_t} \\ \frac{l_{21}(1 - Kl_{23})}{\tau_w} & \frac{\Delta_2 - l_{23}(G - Kl_{22}^{(-)})}{\tau_w} - \gamma \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = 0$$

Stability conditions


Stability regimes in G, K

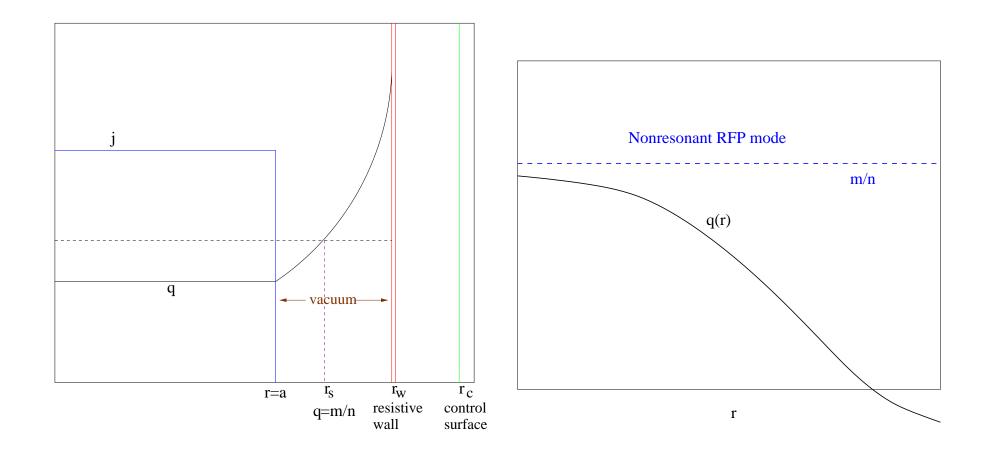
 $\tau_w/\tau_t = 1$: Real marginal ... C.c. marginal ... Stable region

Always a stability window! Thinner, with large G, K, for large Δ_1 . For Δ_1 large enough, G and K are both required.

The effect of τ_w/τ_t

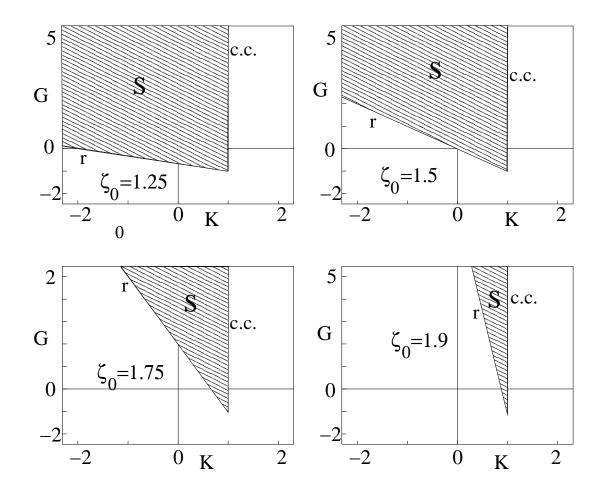
The effect of τ_w/τ_t :

Making resistive wall thicker or less resistive (τ_w larger)

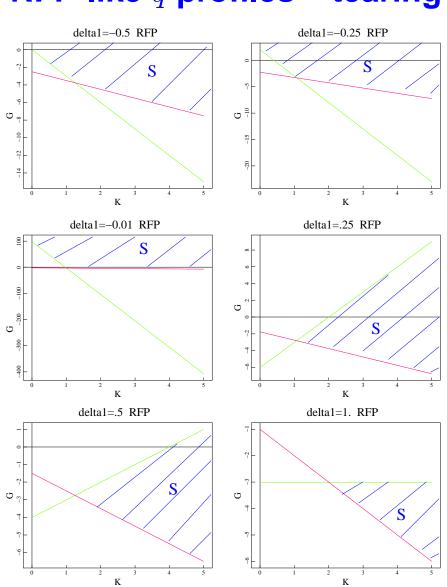

- τ_w/τ_t helps in the wall stabilization regime ($\Delta_1 < 0$). Slow penetration of flux from mode in the plasma slows mode.
- Harms above wall stabilization regime ($\Delta_1 > 0$). Prevents penetration of the feedback flux.

Feedback based on tangential field outside the resistive wall

$$\psi(r_c) = -G\psi(r_w) + K\psi'(r_w +)$$


No stabilization above $\Delta_1 = 0$, where tearing mode is wall stabilized.

Ideal plasma nonresonant external modes – mode rational surface in vacuum. Non-resonant RFP modes



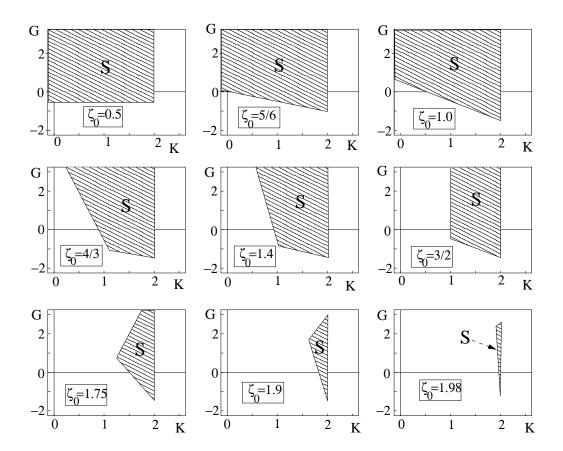
Wall stabilization: $1.5 < \zeta_0 < 2.0$

Ideal external kink (tokamak)

Tokamak-like geometry with mode rational surface in the vacuum. Unstable $\zeta_0 > 2$.

RFP-like *q* **profiles** – **tearing**

Finally, ideal plasma resonant modes (RFP)


Plasma resistive layer at $r = r_t$

Jump in j or in p at r = a

Resistive wall at $r = r_w$

Control at $r = r_c$

$$\begin{bmatrix} \Delta_1 - \gamma \tau_t & l_{12} & 0 \\ l_{21} & \Delta_2 + \frac{\zeta_0}{1 + \rho \gamma^2 / F_a^2} & l_{23} \\ 0 & l_{32} (1 - l_{34} K) & \Delta_3 - \gamma \tau_w - l_{34} (G - l_{33}^{(-)} K) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = 0$$

Stable region of (K, G) space vanishes for $\zeta_0 > 2$ (ideal mode with PC wall). A stable region exists **BELOW** this.

Summary

- Tearing modes (tokamak or RFP): linear feedback sensing radial magnetic field and tangential field can stabilize the tearing mode below **and above** the threshold for stability with a PC wall. Some relation with virtual wall of Bishop ('89) when $Re(\omega) = 0$.
- Increasing τ_w/τ_t (making wall more conducting) increases the range (K, G) of stability for $\Delta_1 < 0 \dots$ decreases(!) the range for $\Delta_1 > 0$. Easy to understand.
- Using radial field and **external** tangential field can stabilize for $\Delta_1 < 0$ but not for $\Delta_1 > 0$.
- Resonant or non-resonant ideal modes: can stabilize below threshold for stability with PC wall, but **not** above.
- Applications: stabilizing m = 1 or m = 0 modes in RFPs; perhaps controlling the amplitude of neoclassical tearing modes in tokamaks.