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Why do we get NTMs?

goodgood
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NTM threshold dependence

Island growth rate governed by modified Rutherford:
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Island growth rate governed by modified Rutherford:
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Example: ion polarisation term,  apol  i
2  g( , )   ( i*  )/ e*

2

•Need a seed to trigger mode

•Introduces dependencies
on * and other variables…
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Rotation influences on NTM

triggering
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Rotation influences on NTM

triggering

• Decrease the threshold terms

– Eg Ion polarisation introduces rotation dependence:
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Rotation influences on NTM

triggering

• Decrease the threshold terms

– Eg Ion polarisation introduces rotation dependence:
apol  i

2  g( , )   ( i*  )/ e*
2

• Depends on rotation in ExB frame of reference

• Increase the seeding process…            (applies to 2/1 NTM?)

– Decreased rotation between resonant surfaces
(q=2 cf q=1, 1.5 or edge) enhances mode coupling
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Seeding is crucial aspect of 

threshold

Seeding depends on complex physics:

 wseed/r  (MHD size)  (coupling)  (shielding factors)

 (shafranov shift

 and plasma shape)
S-

 (‘skin’ effect’)additional dependence?

1. Hegna et al., Phys Plas 6 (1999) 130

Shielding:1

• Must overcome resonant response at NTM surface

• Like error field problem:

– torque induced between surfaces

– locking required for substantial tearing

 Rotation will play an important role
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Rotation influences on NTM
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Rotation influences on NTM

triggering

• Decrease the threshold terms

– Eg Ion polarisation introduces rotation dependence:
apol  i

2  g( , )   ( i*  )/ e*
2

• Depends on rotation in ExB frame of reference

• Increase the seeding process            (applies to 2/1 NTM?)

– Decreased rotation between resonant surfaces
(q=2 cf q=1, 1.5 or edge) enhances mode coupling

• Other drives for the mode

– Variation in ’ drives mode onset at high N    - esp.  2/1 NTM?

• Mechanisms for ion polarisation to influence threshold…
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2/1 NTM triggered by ’ with ideal

limit proximity

4li

[Brennan et al, PP10, 1643]

DIII-D

• 2/1 NTM often with weak/no seeding…

– Comes out of noise at high  N

• Modelling:

– growth driven by “pole” in
classical tearing stability, ':
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DIII-D

If * falls or rotation changes
small island term can fall

 smaller ' rise needed

 NTM at lower N

When ' pole overcomes
small island stabilisation
effects  NTM grows

– But the small island
stabilisation effects
scale with * & rotation

• 2/1 NTM often with weak/no seeding…

– Comes out of noise at high  N

• Modelling:

– growth driven by “pole” in
classical tearing stability, ':

2/1 NTM triggered by ’ with ideal

limit proximity
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Rotation influences on NTM

triggering

• Decrease the threshold terms
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Rotation influences on NTM

triggering

• Decrease the threshold terms

– Eg Ion polarisation introduces rotation dependence:
apol  i

2  g( , )   ( i*  )/ e*
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• Depends on rotation in ExB frame of reference

• Increase the seeding process

– Decreased rotation between resonant surfaces
(q=2 cf q=1, 1.5 or edge) enhances mode coupling

• Other drives for the mode

– Variation in ’ drives mode onset at high N    - esp.  2/1 NTM?

• Mechanisms for ion polarisation to influence threshold…

– Rotational wall stabilisation may play a role

• Depends on mode rotation in lab frame
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Rotation influences on NTM

triggering

•Decrease the threshold terms

– Eg Ion polarisation introduces rotation depencence:
apol  i

2  g( , )   ( i*  )/ e*
2

• Depends on rotation in ExB frame of reference

• Increase the seeding process

– Decreased rotation between resonant surfaces
(q=2 cf q=1, 1.5 or edge) enhances mode coupling

• Other drives for the mode

– Variation in ’ drives mode onset at high N    - esp.  2/1 NTM?

• Mechanisms for ion polarisation to vary threshold…

– Rotational wall stabilisation may play a role

• Depends on mode rotation in lab frame

Rotation enters in various ways, making different types of
rotation dependency, according to which physics is involved

Rotation sign/size in Er=0

Route for other terms

Differential rotation

Absolute rotation
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Experimental 
studies…
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Changing the momentum injection:

ICRH:NBI mix at JET

• Ramp up power for different
mixes of ICRH:NBI power

– Phase ICRH to avoid large
sawteeth

• Clear result obtained
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Changing the momentum injection:

ICRH:NBI mix at JET

• Ramp up power for different
mixes of ICRH:NBI power

– Phase ICRH to avoid large
sawteeth

• Clear result obtained

– But still use of ICRH gives
additional variations

• in sawteeth
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Changing the momentum injection:

ICRH:NBI mix at JET

• Ramp up power for different
mixes of ICRH:NBI power

– Phase ICRH to avoid large
sawteeth

• Clear result obtained

– But still use of ICRH gives
additional variations

• in sawteeth

• and profiles

• Need to do something
more controlled…

Mapping N  local P:

 Profile changing
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Rotation and error fields play key

role in  tearing mode behaviour

• DIII-D and JET show a lowering of 2/1 NTM thresholds with
increased error field:

(corrected for ne 

& Bt variation)
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DIII-D 2/1 NTMs

• This is likely to act through braking of the plasma rotation

– Decreased magnetic shielding

– Changes to NTM physics terms (eg ion polarisation)

– Direct magnetic braking leading to error field penetration

JET 2/1 mode thresholds
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Trends in error field-NTM data

indicating rotation role

• JET error fields have
more 1/1 field

– Increased braking
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• DIII-D data also shows fall in
mode rotation in CX frame

– Suggests rotation in Er=0 falling

– Indicative of ion polarisation
current role

DIII-D

 Explore role of rotation directly…
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Experiments to vary momentum

injection: for 3/2 NTM on JET

• JETs “tangential” and “normal” beams inject different

levels of momentum,

– Induce 3/2 NTM by ramping up power with different

beam mixes

onsetNormal first

Tangential first

Rotation

onsetNormal first

Tangential first

onsetNormal first

Tangential first

Rotation
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3/2 NTM rotation dependence

• A trends is apparent
across the plot

– but some outliers
violate this trend

– due to natural variation
in sawteeth and NTM
from slight changes in
NBI & density waveforms

y = 0.2439x + 0.7707

R2 = 0.4157

0

1

2

3

4

0 2 4 6 8 10
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 N

NTM

No NTM      

• Nevertheless this extrapolates to low thresholds

for a self-heated plasma such as ITER

– Motivates further studies with balanced beams…

JET
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Torque scan experiment on DIII-D

• Perform  ramps at ~fixed co:counter dependence

• Vary co:counter mix and error field between shots:
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Clear trend observed

Plot in terms of co:counter mix:

NTM Threshold vs Beam Torque Mix
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• Threshold falls with co-
torque fall

• Lower still with net
counter injection

• Error fields only modest
effect

• But are hidden
variables changing?...

DIII-D
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Clear trend observed

• Trend born out in terms of rotation

NTM Threshold vs 2/1 NTM Rotation
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Current profiles are fairly steady
at given N

• No significant
variation in li

– Dependence at
NTM onset due to
variation in N

– Still checking out
detailed MSE EFIT
profiles:

• Er correction for
MSE

• Kinetic EFITs for
extreme points…

DIII-D

l i  vs Torque Fraction
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Rotation profiles

• Some variability - but remain sheared, even for counter

Rotation at key surfaces (CER)
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• Suggests low counter thresholds are not simply due to
lower |rotation| (wall effect) or rotation shear (coupling)

DIII-D

q=2 Rotation Shear vs q=2 Rotation (CER)

-40

-20

0

20

40

60

80

100

120

140

-5 0 5 10 15

CER q=2 rotation /kHz

d
 F

ro
t 

/d
R

 @
q

=
2
 /
 k

H
z
/m

Optimal Error Correction

No Error Correction

x-1 Error Correction

x-2 Error Correction

DIII-D



NTMs, rotation & ’ R J Buttery - preliminary MHD workshop 2006

NTM Threshold vs mode rotation 

in ExB frame (rough)
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Ion polarisation current variation?

Rotation in ExB frame (rough)

• Some trend in mode rotation in ExB frame

– Preliminary – detailed CER fits underway with corrections for

atomic physics and other rotation contributions

DIII-D
Rough ExB rotation vs q=2 Rotation
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Even at low torque get rotating

modes

• At -17% torque, 2/1 born at just 430Hz in counter direction

– (3/2 mode rotation just 1kHz, cf usual ~30 with balanced beams)

– A number of near balanced shots exhibit this behaviour

• Even those where error field correction has been reversed

and has led to lower  thresholds!

Not simple error field penetrations

– Error field acting through changes to NTM stability

– …as in previous error field scan experiments

DIII-D
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Conclusions

• A range of experiments indicate NTM onset ’s fall with rotation

– poses a concern for ITER which needs to be investigated further

• A number of effects may be coming into play

– Decreased shielding   Changes in Ion Polarisation

– Error field drive   Reduced wall stabilisation

• Strongest, cleanest effect seen for 2/1 NTM in beam mix exps

– One third fall in threshold to N~2

– Threshold continues to fall with increasing counter rotation!

• Suggests seeding not governed by mode coupling
and not predominantly controlled by wall interaction

• Favours ’ model of seeding with ion polarisation current variation

– Error fields also lower thresholds by plasma braking

These results are preliminary, and we are still checking some key
aspects of behaviour in more detail.
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See m=4 locked modes in some

low rotation cases, as core rotates

Potential for n=1 ELM control with sub-critical error field?

4/1 mode 2/1 mode

Plasma rotation
stopped with 2/1
locked mode
onset

– But not while
4/1 locked
mode present

DIII-D
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Reserve slides…
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Locked mode

• Locked mode always forms
with negative CER rotation

– Tallies with offset between
mode and CER rotation

– Diamagnetic rotation…

Average CER Rotation profiles just after 

mode locks (+stdevs plotted)
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– higher e-dissipation
raises w0 ~(De)0.5

Transient transport events can seed NTMs

• Does not require frequency
matching between MHD
modes and the island

• May explain error field effects

• Ion polarisation effects depend on island rotation - apol ~ (   )

Ion polarisation
destabilising

w

e
*

i
*

w0

– naturally leads to small islands
via ion polarisation effects

Rotation from  balance of
ion and electron dissipation:

MHD event:
- ergodises the edge
- increases e- transport, De

- rotation more in e- direction

Islands produce 3-D
structure in |B|
Neoclassical ion

viscosity

e- transport
(De)

[Hegna, Bull.Am.Phys.Soc.48, 280]
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LHCD in low field regimes

• LHCD is a potentially efficient tool for driving current

– and useful perturbative tool to explore the role of ’

• Expect effect on tearing modes:

• But at low fields JET’s LHCD is operating below cut off

• Wave undergoes multiple reflections, broadening n//

& leading to deeper penetration

• Code to calculate this under construction & needs data

Explore effect in heated NTM phase and Ohmic error field phase:

NBIEF
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NTM

= r
dt
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LHCD drives axi-symmetric currents,
modifying overall tearing stability

Bootstrap drive overcomes
natural tearing stability

Small
island
effects
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LHCD on a saturated 3/2 NTM

• Significant effect on
saturated 3/2 amplitude

– Mode size falls
15-60% with LHCD

• Increased LHCD power
would be interesting

– May be at tipping
point for mode

• MSE data not optimised
for these discharges

• Further data with more
LHCD and optimised
settings for MSE needed

3/2 NTM amplitude vs LHCD power t=15s
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LHCD on 2/1 error field threshold

in lower density phase of

discharge

• Not really a clear effect on the
error field thresholds…

• But indications of a systematic
effect on the current profile:

LHCD influences current profile
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Rotation profiles

• Some variability but remain sheared, even for counter

Rotation Peaking vs 

Mid-radii Rotation
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Rotation at key surfaces (CER)
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• Suggests low counter thresholds are not simply due to
lower |rotation| (wall effect) or rotation shear (coupling)

DIII-D

q~1:q~1.5

q~1.5:q~2


