

MHD Workshop, Princeton, Nov 2006:

Influence of delta-prime and rotation on NTM thresholds

R J Buttery

with special thanks and considerable input from: R. J. La Haye, S. Coda, G. Jackson, H. Reimerdes and E. J. Strait.

Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, the UK EPSRC and US DOE.

EURATOM/UKAEA Fusion Association, Culham Science Centre, UK.

Results are preliminary and should not be distributed further

Tearing modes are amplified by a bootstrap effect:

transport width

small island terms stabilising - lead to minimum size and β for growth

NTMs, rotation & Δ ' R J Buttery - preliminary

MHD workshop 2006

currents

small island terms stabilising - lead to minimum size and β for growth

Example: ion polarisation term, $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

$$\Rightarrow \beta_{p-onset} \propto -r_s \Delta' \cdot \rho_{i\theta}^* \cdot \frac{w_{seed} / \sqrt{a_{pol} / a_{bs}}}{[1 - a_{pol} / a_{bs} w_{seed}^2]} \cdot g$$

- Need a seed to trigger mode
- Introduces dependencies on ρ^* and other variables...

R J Buttery - pre

UKAEA NTMs, rotation & Δ ' R J Buttery - *preliminary*

MHD workshop 2006

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

- ★ Island streaming through the plasma
 - polarization drift from ion inertia

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

• Depends on rotation in ExB frame of reference

- ★ Island streaming through the plasma
 - polarization drift from ion inertia

R J Buttery - preliminary

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process... (applies to 2/1 NTM?)
 - Decreased rotation between resonant surfaces
 (q=2 cf q=1, 1.5 or edge) enhances mode coupling

1. Hegna et al., Phys Plas <u>6</u> (1999) 130

NTMs, rotation & Δ '

R J Buttery - preliminary

MHD workshop 2006

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process
 (applies to 2/1 NTM?)
 - Decreased rotation between resonant surfaces
 (q=2 cf q=1, 1.5 or edge) enhances mode coupling

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process
 (applies to 2/1 NTM?)
 - Decreased rotation between resonant surfaces (q=2 cf q=1, 1.5 or edge) enhances mode coupling
- Other drives for the mode
 - Variation in Δ' drives mode onset at high β_N esp. 2/1 NTM?
 - Mechanisms for ion polarisation to influence threshold...

$\begin{array}{c} \textbf{2/1 NTM triggered by } \Delta' \text{ with ideal} \\ \textbf{limit proximity} \end{array}$

- 2/1 NTM often with weak/no seeding...
 - Comes out of noise at high β_N
- Modelling:
 - growth driven by "pole" in classical tearing stability, Δ[']:

- >When ∆' pole overcomes small island stabilisation effects → NTM grows
 - But the small island stabilisation effects scale with ρ^{\ast} & rotation
- If ρ* falls or rotation changes small island term can fall
 - \Rightarrow smaller Δ ' rise needed
 - \Rightarrow NTM at lower β_N

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process
 - Decreased rotation between resonant surfaces
 (q=2 cf q=1, 1.5 or edge) enhances mode coupling
- Other drives for the mode
 - Variation in Δ' drives mode onset at high β_N esp. 2/1 NTM?
 - Mechanisms for ion polarisation to influence threshold...

- Decrease the threshold terms
 - Eg Ion polarisation introduces rotation dependence:

 $a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process
 - Decreased rotation between resonant surfaces
 (q=2 cf q=1, 1.5 or edge) enhances mode coupling
- Other drives for the mode
 - Variation in Δ' drives mode onset at high β_N esp. 2/1 NTM?
 - Mechanisms for ion polarisation to influence threshold...
 - Rotational wall stabilisation may play a role
 - Depends on mode rotation in lab frame

- Decrease the threshold terms —> Rotation sign/size in Er=0
 - Eg Ion polarisation introduces rotation depencence:

$a_{pol} \propto \rho_{i\theta}^2 g(v,\varepsilon) \omega (\omega_{i^*} - \omega)/\omega_{e^*}^2$

- Depends on rotation in ExB frame of reference
- Increase the seeding process Differential rotation
 - Decreased rotation between resonant surfaces
 (q=2 cf q=1, 1.5 or edge) enhances mode coupling
- Other drives for the mode

Route for other terms

- Variation in Δ' drives mode onset at high β_N esp. 2/1 NTM?
 - Mechanisms for ion polarisation to vary threshold...
- Rotational wall stabilisation may play a role Absolute rotation
 - Depends on mode rotation in lab frame

Rotation enters in various ways, making different types of rotation dependency, according to which physics is involved

Experimental studies...

UKAEA NTMs, rotation & Δ ' R J Buttery - *preliminary*

MHD workshop 2006

Changing the momentum injection:

NATIONAL FUSION FACILITY

- Ramp up power for different mixes of ICRH:NBI power
 - Phase ICRH to avoid large sawteeth
- Clear result obtained

R J Buttery - preliminary

Changing the momentum injection: ICRH:NBI mix at JET

- Ramp up power for different mixes of ICRH:NBI power
 - Phase ICRH to avoid large sawteeth
- Clear result obtained
 - But still use of ICRH gives additional variations
 - in sawteeth

R J Buttery - preliminary

Changing the momentum injection:

- Ramp up power for different mixes of ICRH:NBI power
 - Phase ICRH to avoid large sawteeth
- Clear result obtained
 - But still use of ICRH gives additional variations
 - in sawteeth
 - and profiles
- Need to do something more controlled...

Rotation and error fields play key role in tearing mode behaviour

 DIII-D and JET show a lowering of 2/1 NTM thresholds with increased error field:

• This is likely to act through braking of the plasma rotation

- Decreased magnetic shielding
- Changes to NTM physics terms (eg ion polarisation)
- Direct magnetic braking leading to error field penetration

Trends in error field-NTM data indicating rotation role

- DIII-D data also shows fall in mode rotation in CX frame
 - Suggests rotation in Er=0 falling
 - Indicative of ion polarisation current role
- Explore role of rotation directly...

- JET error fields have more 1/1 field
 - Increased braking

R J Buttery - preliminary

Experiments to vary momentum injection: for 3/2 NTM on JET

- JETs "tangential" and "normal" beams inject different levels of momentum,
 - Induce 3/2 NTM by ramping up power with different beam mixes

- Nevertheless this extrapolates to low thresholds for a self-heated plasma such as ITER
 - Motivates further studies with balanced beams...

Torque scan experiment on DIII-D

- Perform β ramps at ~fixed co:counter dependence
- Vary co:counter mix and error field between shots:

Plot in terms of co:counter mix:

- Threshold falls with cotorque fall
- Lower still with net counter injection
- Error fields only modest effect
- But are hidden variables changing?...

Trend born out in terms of rotation

Current profiles are fairly steady at given β_N

No significant variation in li

- Dependence at NTM onset due to variation in β_N
- Still checking out detailed MSE EFIT profiles:
 - Er correction for MSE
 - Kinetic EFITs for extreme points...

Some variability - but remain sheared, even for counter

 Suggests low counter thresholds are <u>not</u> simply due to lower |rotation | (wall effect) or rotation shear (coupling)

Rotation in ExB frame (rough)

NTM Threshold vs mode rotation

Some trend in mode rotation in ExB frame

Rough ExB rotation vs q=2 Rotation

- Preliminary – detailed CER fits underway with corrections for atomic physics and other rotation contributions

Even at low torque get rotating modes

- NATIONAL FUSION FACILITY
- At -17% torque, 2/1 born at just 430Hz in counter direction
 - (3/2 mode rotation just 1kHz, cf usual ~30 with balanced beams)

- A number of near balanced shots exhibit this behaviour
 - Even those where error field correction has been reversed and has led to lower β thresholds!

Not simple error field penetrations

- Error field acting through changes to NTM stability
- ...as in previous error field scan experiments

- A range of experiments indicate NTM onset β's fall with rotation
 - poses a concern for ITER which needs to be investigated further

Changes in Ion Polarisation

- A number of effects may be coming into play
 - Decreased shielding
 - Error field drive
 Reduced wall stabilisation
- Strongest, cleanest effect seen for 2/1 NTM in beam mix exps
 - One third fall in threshold to $\beta_N \sim 2$
 - Threshold continues to fall with increasing counter rotation!
 - Suggests seeding not governed by mode coupling and not predominantly controlled by wall interaction
 - Favours Δ^\prime model of seeding with ion polarisation current variation
 - Error fields also lower thresholds by plasma braking

These results are preliminary, and we are still checking some key aspects of behaviour in more detail.

[KAEA NTMs, rotation & Δ '

R J Buttery - preliminary

See m=4 locked modes in some low rotation cases, as core rotates

Shot 126628

smoothing 20 points baseline 20.0 msec contour range -25.0 25.0 n>0 components fitting mode n = 1

DIII-D

MHD workshop 2006

IONAL FUSION FACIN

ň Upper Array angle 300 200 Plasma rotation toroidal 100 stopped with 2/1 Midplane Array locked mode 300 onset 200

NTMs, rotation & Δ '

 But not while 4/1 locked mode present

mode time slice = 2100.0 msec phase m = 4angle 20 ЪО, -20 Q n 100 200 300 tor. angle MPI67A / B (6 individual loop 169.5 phase = (4 hardwired pairs) MPID-U phase = 347.2 oroidal 2/1 mode 4/1 mode 100 Lower Array MPI67A / B (6 individual loops) phase = 162.2 300 gug 200 100 2800 1800 2000 2200 2400 2600 -5 5 Time (msec) delta-B (G)

Potential for n=1 ELM control with sub-critical error field?

R J Buttery - preliminary

Reserve slides...

UKAEA NTMs, rotation & Δ ' R J Buttery - *preliminary*

MHD workshop 2006

Locked mode always forms with negative CER rotation

- Tallies with offset between mode and CER rotation
- Diamagnetic rotation...

NTMs, rotation & Δ '

R J Buttery - preliminary

MHD workshop 2006

• Ion polarisation effects depend on island rotation - $a_{pol} \sim \omega(\omega - \omega *_I)$

[[]Hegna, Bull.Am.Phys.Soc.48, 280]

Rotation from balance of ion and electron dissipation:

- naturally leads to small islands via ion polarisation effects
- higher e-dissipation raises $W_0 \sim (D_e)^{0.5}$
- Does not require frequency matching between MHD modes and the island
- May explain error field effects

LHCD in low field regimes

- LHCD is a potentially efficient tool for driving current
 - and useful perturbative tool to explore the role of Δ'
 - Expect effect on tearing modes:

But at low fields JET's LHCD is operating below cut off

- Wave undergoes multiple reflections, broadening n_{//} & leading to deeper penetration
- Code to calculate this under construction & needs data

Explore effect in heated NTM phase and Ohmic error field phase:

- Significant effect on saturated 3/2 amplitude
 - Mode size falls
 15-60% with LHCD
- Increased LHCD power would be interesting
 - May be at tipping point for mode
- MSE data not optimised for these discharges
- Further data with more LHCD and optimised settings for MSE needed

in lower density phase of

NTMs, rotation & Δ '

- Not really a clear effect on the error field thresholds...
- But indications of a systematic effect on the current profile:

Some variability but remain sheared, even for counter

 Suggests low counter thresholds are <u>not</u> simply due to lower |rotation | (wall effect) or rotation shear (coupling)