Halo Current and Resistive Wall Simulations of ITER

H.R. Strauss¹, W.Park², S. Jardin², J. Breslau², A.Pletzer², R. Paccagnella³, L. Sugiyama⁴

1)New York University, New York, New York, USA
2)Princeton University Plasma Physics Laboratory, Princeton, New Jersey, USA
3)Instituto Gas Ionizzati del C.N.R., Padua, Italy
4)MIT, Cambridge, MA, USA

Outline

- Halo current nonlinear, resistive MHD with resistive wall
 - VDE
 - **Disruption**
 - RWM
- Resistive wall mode
 - Linear stability with resistive plasma
 - Rotational stabilization

Halo Current

- Halo current:
 - Poloidal current flowing into wall
- Causes stress on walls
 - Toroidal asymmetry: TPF (toroidal peaking factor)
 - Halo current fraction
 - Want to confirm ITER database with simulation
- Occurs during:
 - VDE (vertical displacement event)
 - Major disruption
 - External kink / (RWM) Resistive wall mode
- Modeling
 - M3D code
 - Resistive wall boundary condition
 - Can apply to RWM
 - Self consistent plasma resistivity

M3D plasma – halo – vacuum model

 $\begin{array}{cccc} pv & max & 0.19E + 00 \\ min & -0.93E - 01 & t = & 0.09 \end{array}$

plasma regions

- core
- Halo
- 1st wall
- inner vacuum
- Vacuum wall
- Outer vacuum

Self consistent resistivity

- Resistivity varies as temperature to -3/2 power
- Thermal conduction equalizes temperature on field lines
 - 2D : open halo field lines in thermal contact with wall
 - 3D: disruptions cause stochastic mixing of cold plasma with core, causing thermal quench
- Piecewise constant resistivity in some linear calculations
 - Core: high $S = 10^6$
 - Halo: medium S=10²
 - Outer vacuum: low S = 0.1

Computational mesh – low resolution for clarity

Circl f = 0.000

 $\begin{array}{cccc} pv & max & 0.19E{+}00 \\ min & -0.93E{-}01 \ t{=} & 0.09 \end{array}$

1 and 2 wall models

- ITER type
- •Core resistive MHD
- •Halo highly resistive MHD
- •1st wall v = 0
- •Inner vacuum S < 1 resistive diffusion
- •Resistive wall thin wall resistive boundary
- •Outer vacuum GRIN Green's function

- NSTX type also used for ITER
- •Core
- •Halo
- •Resistive wall = 1st wall
- •Outer vacuum

VDE Instability

- 2D instability
- Growth rate proportional to wall resistivity
- 1st wall is resistive
- Halo current flows when core near wall

VDE growth rate is proportional to wall resistivity

^{. . . .}

3D disruptions

- penetration of toroidal flux into wall gives halo current
- Resistive wall required
- TPF: Toroidal Peaking Factor toroidal asymmetry of ITER halo currents
- Halo Current Fraction measure of halo current
- Disruption can combine with VDE increasing its growth rate
- Case of internal kink with large q=1 radius
- Contours of toroidal flux intersecting the wall are halo current

Disruptions cause thermal and current quench

Thermal conduction along stochastic magnetic field cools plasma Core not isolated from halo High resistivity quenches current, including halo current

Halo current

Normal component of poloidal Current flowing through the boundary as function of toroidal angle

Toroidal peaking factor

Halo current fraction of Toroidal current

Inverse relation of TPF to Halo current fraction

 $I_h(\phi) = \pi \oint |n \cdot J| R dl$

toroidal peaking factor and halo current fraction

 $TPF = 2, F_h = .35$

Nonlinear RW – external kink

Results are consistent with ITER database

F_h

TPF x F_h = peak halo current / total current < 1

Linear Scaling of Resistive Wall mode with plasma resistivity

Simulation of RWM is complicated by plasma resistivity

Finn, 1995; Betti, 1998

RWM interacts with tearing/electromagnetic resistive ballooning mode – RWM regime has large growth rate

ITER AT equilibrium

Initialized from EQDSK – including vacuum region

Linear stability

NSTX linear RWM

 $\beta_N = 5, q_0 = 1.7$

Summary

- Halo current in M3D simulations of disruption and RWM
- TPF consistent with ITER database
- Plasma resistivity complicates RWM
 - Larger growth rates and lower stability boundaries
 - Can be stable with ideal wall
 - Rotational stabilization
- Future work
 - Linear stability vs. beta: need EQDSK
 - Nonlinear simulations with rotation and finite amplitude magnetic perturbations: disruptions
 - Kinetic effects: bulk ions or energetic ions
 - Feedback: finite amplitude modes