# Adaptive Stochastic Control Via Output Feedback

(FOR RWM)

Z.Sun, A.K.Sen and R.W.Longman

# Motivation and Outline

- Need for advanced modern control system.
- Optimal state feedback (in noise)
  - ➤ Too complex,
  - Not user friendly,
  - Optimal output feedback (in noise)
    - Less complex,
    - > Better performance
  - Adaptive optimal output feedback (in noise)
    - Adaptation is a must in time evolving plasma discharge,
    - > Identification of evolving plasma instability parameters,
  - Evolving controller design based on the above

# OPTIMAL STATE FEEDBACK (IN NOISE)

#### **Basic Equations of a Single RWM**

• Variables: I<sub>1</sub> (plasma current), I<sub>2</sub> (wall current), I<sub>3</sub> (control current).

$$\begin{split} & L_{1}^{eff} I_{1} + M_{12}I_{2} + M_{13}I_{3} = \psi_{n} \text{ (state noise)} \\ & \gamma M_{12}I_{1} + (\gamma + \tau_{2}^{-1})L_{2}I_{2} + \gamma M_{23}I_{3} = 0 \\ & \gamma M_{13}I_{1} + \gamma M_{23}I_{2} + (\gamma + \tau_{3}^{-1})L_{3}I_{3} = u \text{ (input)} \end{split}$$

• The above equations can be generalized:

$$\dot{I} = AI + Bu + D\psi_{n} \tag{1}$$

$$\psi(t) = H^{T}I(t) + \psi_{m}(t) (measurement noise)(2)$$

• Goal: minimize fluctuation energy and control energy, i.e., minimize

$$J = \frac{1}{T_f} \int_0^{T_f} E[I^T(t)QI(t) + u^T(t)Ru(t)]dt, T_f \to \infty$$
 (3)

subject to the constraint of Eq. (1).

• Use calculus of variations: defining a Lagrangian L

$$L(x,\dot{x}) = I^{T}(t)QI(t) + u^{T}(t)Ru(t) + \lambda^{T}(t)[AI(t) + Bu(t) - \dot{I}(t)]$$

where  $x = (I^T U^T \lambda^T)^T$ ,  $\lambda$  is a Lagrange multiplier.

• Then the optimal control minimizing J of Eq. (3) satisfies the Euler-Lagrange equation:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

One resulting equation is:

$$u(t) = -R^{-1}B^{T}\lambda(t) \tag{4}$$

Two other resulting equations:

$$\begin{pmatrix} \dot{I}(t) \\ \dot{\lambda}(t) \end{pmatrix} = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \begin{pmatrix} I(t) \\ \lambda(t) \end{pmatrix}$$

• It can be shown that  $\lambda = SI$ , where S is the solution of the matrix Riccati Eq.

$$SA + A^{T}S - SBR^{-1}B^{T}S = -Q$$
. Then from Eq. (4):

STATE FEEDBACK 
$$u(t) = -K_c I(t) = -R^{-1}B^T SI(t)$$
 (5);  $K_c = R^{-1}B^T S$ 

Note: optimal feedback is necessarily stabilizing!

• Solution: assume  $\psi_n(t)$  is white noise,  $\psi_{nRMS}^2 = W$ :

$$(A - BK_c)I_{RMS}^2 + I_{RMS}^2 (A - BK_c)^T = -DWD^T$$

#### Design of a State Observer (Kalman Filter)

- Sensor output:  $\psi(t) = HI(t) + \psi_m(t)$  (measurement noise)
- Observer Eq:  $\hat{I}(t) = A\hat{I}(t) + Bu(t) + K_f[\psi(t) H\hat{I}(t)]$
- Determination of  $K_f$ : estimation error  $e = I \hat{I}$ :

$$\dot{\boldsymbol{e}}(t) = (A - K_f H)e(t) + D\psi_n(t) - K_f \psi_m(t)$$

• Minimization of  $P(t) = E[e(t)e^{T}(t)]$  via a similar procedure of variational calculus to yield the observer Ricatti Eq:

$$\mathbf{0} = (\mathbf{A} - \mathbf{K}_f \mathbf{H}) \mathbf{\vec{P}} + \mathbf{\vec{P}} (\mathbf{A} - \mathbf{K}_f \mathbf{H})^T + DWD^T + \mathbf{K}_f V \mathbf{K}_f^T$$
$$\mathbf{K}_f = \mathbf{\vec{P}} \mathbf{H}^T V^{-1}; \psi_{nRMS}^2 = V$$

Then 
$$I_{RMS}^2 = \hat{I}_{RMS}^2 + \overline{P}, E[uu^T] = K_c \hat{I}_{RMS}^2 K_c^T$$





#### TRANSFER FUNCTION MODEL OF

# **Basic Equations of a Single RWM**

• The continuous system model in transfer function form:

$$A(s)\psi(s) = B(s)u(s) + C(s)e(s)$$
(1)

- $A(s) = s^2 78.5s 7.4 \times 10^3$ , the poles are [-55, 133],
- > B(s) = -1.6s + 541.1
- $C(s) = s^2 + 4.5 \times 10^3 s 5.9 \times 10^6$
- The term e(s) is the system noise, including both state noise  $\psi_n$  and measurement noise  $\psi_m$ .
- The sampling rate of the system model is chosen to be 1ms and the resulting discrete transfer function is:  $(q \text{ is the forward shift operator, i.e., } q\psi(k) = \psi(k+1))$

$$A(q)\psi(k) = B(q)u(k) + C(q)e(k)$$
(2)

$$A(q) = q^2 + a_1 q + a_2 = q^2 - 2.1q + 1.1$$
,  $B(q) = b_0 q + b_1 = (-1.37q + 1.94) \times 10^{-3}$ 

$$\triangleright C(q) = q^2 + c_1 q + c_2 = q^2 - 0.36q - 6.74 = (q - 2.78)(q + 2.42)$$

- The optimal output feedback controller requires that C(q) has all its zeros inside the unit disc.
  - If C(q) has zeros outside unit circle, factorize  $C = C^+C^-$ , where  $C^-$  contains all factors with zeros outside the unit circle.
  - **Replace**  $C^-$  with its reciprocal form  $C^{-*}$ .

$$C(q) = (q+1/2.42)(q-1/2.78) = q^2 + 0.05q - 0.15$$

- The broad band RMS noise is roughly 1/2 to 1 Gauss
  - It is considered that the magnitude of the plant noise is a fraction of that of the measurement noise, so we assume

$$\psi_n = 3 \times 10^{-6} \text{ Weber}, \quad \psi_m = 2 \times 10^{-4} \text{ Weber}.$$

#### OPTIMAL OUTPUT FEEDBACK

• The main goal is to minimize both the fluctuation energy of the instabilities and the control energy simultaneously, so the quadratic cost function is:

$$J = E\left\{ \left( \psi(k) \right)^2 + \rho u^2 \right\}$$
 control input (3)

where  $\rho$  is the relative weight of control energy over fluctuation energy.

- Assumptions:
  - ightharpoonup C(q) has all its zeros inside the unit disc,
- There is no polynomial which divides A(q), B(q) and C(q).

  Using a similar formalism of calculus of variations one can find the admissible control law which minimizes (3) with  $\rho > 0$  is given by:

$$R(q)u(q) = -S(q)\psi(q) \tag{4}$$

• R(q) and S(q) satisfy the Diophantine equation:

$$A(q)R(q) + B(q)S(q) = P(q)C(q)$$
(5)

• The polynomial P(q) is the solution of the spectral factorization problem:

$$rP(q)P(q^{-1}) = \rho A(q)A(q^{-1}) + B(q)B(q^{-1})$$
(6)

where r is a coefficient that can be uniquely solved from the above equation.

- P(q) gives the closed loop pole of the system.
- **Eq.(6)** can be solved directly or iteratively.
- The optimal output feedback controller is closely connected to the pole placement method.
  - The solution of the Diophantine equation Eq. (5) can be interpreted as a pole placement problem.

CARTOON OF CONCEPT:

under fied back

not opt.

Concepts



# **Online System Identification**

#### **Batch Least Square Method Based on a Deterministic Model**

• The deterministic model is used to derive the Batch LS method.

$$A(q)\psi(k) = B(q)u(k)$$
Out that 3nbut. (7)

- Apply a sequence of inputs  $\{u(1)...u(k)...u(n)\}$  to the plasma system and a sequence of outputs  $\{\psi(1)...\psi(k)...\psi(n)\}$  is obtained.
- Define the parameter vector  $\theta^T = (a_1 \ a_2 \ b_0 \ b_1)$  and the regression vector  $\varphi^T(k-1) = (-\psi(k-1) \ -\psi(k-2) \ u(k-1) \ u(k-2))$ , the input-output relation is:

$$\psi(k) = \varphi^{T}(k-1)\theta$$
Scalar output

Regression Pavameter Vector

Vector

• Define: 
$$\Phi = \begin{pmatrix} \vdots \\ \varphi^{T}(k-1) \\ \vdots \\ \varphi^{T}(n-1) \end{pmatrix}$$
  $\Psi = \begin{pmatrix} \vdots \\ \psi(k) \\ \vdots \\ \psi(n) \end{pmatrix}$ , Eq. (8) becomes:  $\Psi = \Phi \theta$ .

Parameter vector Regression matrix (square)

- The objective is to determine the parameter vector  $\hat{\theta}$  in such a way that the computed outputs agrees with the output as close as possible in the sense of least square.
  - $> \hat{\theta}$  is the estimate of  $\theta$ .
  - The least square loss function is defined as:

$$V(\theta, n) = \frac{1}{2} \sum_{k=1}^{n} \left( \psi(k) - \varphi^{T}(k) \hat{\theta} \right)^{2}$$
(9)

If the matrix  $\Phi^T \Phi$  is nonsingular,  $\hat{\theta}$  is unique and given by  $\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T \Psi$  (10)

#### **Recursive Least Square (RLS) Method**

• It is desirable to compute the estimate recursively. First, define the covariance

matrix P: 
$$P(k) = (\Phi^T(k)\Phi(k))^{-1} = \left(\sum_{i=1}^k \varphi(i)\varphi^T(i)\right)^{-1}$$
.

- Eq.(10) can be rewritten as:  $\hat{\theta}(k) = P(k) \left( \sum_{i=1}^{k} \varphi(i) \psi(i) \right) = P(k) \left( \sum_{i=1}^{k-1} \varphi(i) \psi(i) + \varphi(k) \psi(k) \right)$ .
- Use the definition of P, the following equation is obtained:

$$\sum_{i=1}^{k-1} \varphi(i) \psi(i) = P^{-1}(k-1)\widehat{\theta}(k-1) = P^{-1}(k)\widehat{\theta}(k-1) - \varphi(k)\varphi^{T}(k)\widehat{\theta}(k-1).$$

• The recursive least square (RLS) method takes the form:
$$\hat{\theta}(k) = \hat{\theta}(k-1) + K(k)(\hat{\psi}(k) - \hat{\varphi}^T(k)\hat{\theta}(k-1))$$

$$K(k) = P(k)\hat{\varphi}(k) = P(k-1)\hat{\varphi}(k)(I + \hat{\varphi}^T(k)P(k-1)\hat{\varphi}(k))^{-1}$$

$$P(k) = (I - K(k)\hat{\varphi}^T(k))P(k-1)$$
(11)

#### **Extended Least Square (ELS) Method**

- The stochastic model Eq. (2) is used to derive the ELS method.
- For a stochastic system, the RLS method Eq. (11) can not be used directly because the regression vector and the disturbances are correlated, i.e.,  $E[\varphi^T e] \neq 0$ .
- Introduce:  $\varepsilon(k) = \psi(k) \varphi^T(k-1)\hat{\theta}(k-1)$  to estimate the noise term e(k),  $\theta = (a_1 \ a_2 \ b_0 \ b_1 \ c_1 \ c_2)$ ,  $\varphi^T(k) = (-\psi(k) \ -\psi(k-1) \ u(k) \ u(k-1) \ \varepsilon(k) \ \varepsilon(k-1))$ , then the **RLS method can be used.** This method is called ELS method.
- The identified system model is shown in Fig.1.
  - The convergence time of the system identification is 10ms.
  - > The value of initial P matrix determines the convergence time.
- The growth rate of the open loop system is shown in Fig.2(a).



Fig. 1 Identification of a time invariant system with ELS method. The solid lines are the estimate and the dashed lines are true values.

convergence time ~ 10 ms



Fig. 2 Growth rate. (a) is the growth rate of the open loop system and (b) is the closed loop system. Negative growth rate means the system is stable.

convergence time ~ 10 ms

# 12

## **Optimal Control** of the Identified Model

#### **Optimal Control of the Time Invariant System**

- A simulation of the optimally controlled time invariant plasma system is shown.
  - Fig.2(b) is the damping rate of the close loop time invariant system.
  - ➤ Fig.3(a) is the estimated controlled plasma current. The RMS value is 420A×3
  - Fig.3(b) is the control current. The RMS value is 36A. X 3
  - ➤ The control response time is 20ms.
    - **❖ The identification** takes 10ms to converge, so the total 30ms.
  - The controller stabilizes when the system identification converges.
  - $\triangleright \rho$  has very big effect on the convergence time. A larger  $\rho$  will increase the convergence time.



Fig. 3 Adaptive optimal control of a time invariant system.

#### **Extended Least Square (ELS)** Method with Forgetting Factor

- The real plasma systems are always dynamic and evolving.
- One method to estimate the slowly time-evolving system parameters is to use a forgetting factor  $\lambda$ ,  $0 < \lambda \le 1$ , in the identification.
- The ELS method with a forgetting factor becomes:

$$\hat{\boldsymbol{\theta}}(\boldsymbol{k}) = \hat{\boldsymbol{\theta}}(\boldsymbol{k} - 1) + K(k)(\psi(k) - \varphi^{T}(k)\hat{\boldsymbol{\theta}}(k - 1))$$

$$K(\boldsymbol{k}) = P(\boldsymbol{k})\varphi(k) = P(k - 1)\varphi(k)(\lambda I + \varphi^{T}(k)P(k - 1)\varphi(k))^{-1}$$

$$P(\boldsymbol{k}) = (I - K(\boldsymbol{k})\varphi^{T}(k))P(k - 1)/\lambda$$
(12)

- The relationship between the forgetting factor  $\lambda$  and the time constant of this method,  $T_f$ , is:  $\lambda = e^{-T_s/T_f}$ 
  - ▶ fast evolution → quick discount of the old data → smaller  $\lambda$ .
  - > slow evolution → slow discount of the old data → larger  $\lambda$ .

• Simulation of a time evolving system. The simulation starts with the original system, then the poles of the open loop system is increased by 10% of the original value after 50ms and this is repeated ten times. The final poles are two times the original value.

$$(-55\ 133) \rightarrow (-55\ 133) \times 1.1 \rightarrow (-55\ 133) \times 1.2 \dots \rightarrow (-55\ 133) \times 2$$

- The identified system model is shown in Fig.4.
  - The estimator follows the evolution of the system closely. That means this identification algorithm can be used in an adaptive controller.
- The growth rate of the open loop system is shown in Fig.5(a). The oscillation of the growth rate is caused by the change in the system model.



Fig.4 Identification of a time evolving system with forgetting ELS. The solid lines are estimates and the dashed lines are true values.



Fig. 5 Growth rate. (a) is the growth rate of the open loop system and (b) is the closed loop system. The arrows indicate where the system change takes place.

#### **Optimal Control of the Time evolving System**

- A simulation of the optimally controlled time evolving plasma system is shown.
  - > Fig.5(b) is the damping rate of the close loop time evolving system.
  - > Fig.6(a) is the system output measurement.
  - > Fig.6(b) is the control signal.



Fig. 6 Adaptive control of a time evovling system. The arrows indicate where the system change takes place.

### **Conclusions**

- quite
- Plasma noise and measurement noise modeling is semewhat questionable,
- Compared with the stochastic optimal state feedback control studied before, the optimal output feedback controller is better in some aspects:
  - > The implementation is simplified,
    - The estimation of the system states is unnecessary and the Kalman filter is not needed,
    - The optimal control design is simplified,
  - Therefore, the system identification and control response time are shorter,
  - > The system identification is more accurate,
- Adaptive optimal control appears to be feasible for slow growing modes like RWMs. It is a must for the future magnetic fusion machines.
- In principle, all plasma instabilities with discrete spectra can be feedback stabilized (observability and controllability): demonstrated theoretically and experimentally in CLM.