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Motivation and Outline

* Need for advanced modern control system.

v * Optimal state feedback (in noise)

» Too complex,
» Not user friendly,

e Optimal output feedback (in noise)
» Less complex,
» Better performance

e Adaptive optimal output feedback (in noise)
» Adaptation is a must in time evolving plasma discharge,
» Identification of evolving plasma instability parameters,

* Evolving controller design based on the above



OPTIMAL STATE FEEDBACK (W Naise)
Basic Equations of a Single RWM

« Variables: I; (plasma current), I, (wall current), I (control current).
LI+ M1, + M,,I, =y, (state noise)
y ML +(y+7; LI, +y M,I, =0
y ML+ ML +(y + 1)L,
 The above equations can be generalized: -
I=AI+Bu+Dy, 1)
w(t)=H"I(?) ;u,,,. t)(measurement noise)(2)

 Goal: minimize fluctuation energy and control energy, i.e., minimize

J= —Tl- f’ E[I" (t) QI(t) +u" (£) Ru($)]dt, T, — oo 3)
J

subject to the constraint of Eq. (1).



« Use calculus of variations: defining a Lagrangian L
L(x,x)=1"(QI()+u" (t)Ru(t) + A" ()[AI(t) + Bu(t) - 1]
where x = (1" UT A")", A is a Lagrange multiplier.

¢ Them the optimal control minimizing J of Eq. (3) satisfies the Euler-Lagrange

equation:
d [ J L] _9L_,
dt\dx) Jdx
One resulfing equation is:
u(t)=-R"'B" A1) (4)

Two other resulting equations:

li(r) (A —BR™'BT (1(:))
A®) (-0 AT A?)



« It can be shown that 4 =SI, where S is the solution of the matrix Riccati Eq:
[SZ +A'S—SBR'B'S = -ﬂThen from Eq. (4):
_ -l _.
STATE PEEDBAck|()=—K.1()=-R"B"SI() (5)% K =R'B'S
Note: optimal feedback is necessarily stabilizing!

o Solution: assume ¥, (") is white noise, Vs =W :

(A-BK))I}, +1.,,(A-BK ) =-DWD'



Design of a State Observer (Kalman Filter)

PR a— Output:; y)=HI@)+y, (t)(measurement noise)

“Livear cambhmb on o phakes
» Observer Eq: 1(t) = A()+ Bu(t)+ K, [y (1)~ HI ()]

 Determimation of K: estimation error e =1 ~1:
e(t)=(A- KfH)e(t) +Dy,(t)-K,y, ()
* Minimization of P(#)= E[e(t)e’ ()] via a similar procedure of variational
calculus to yield the observer Ricatti Eq:
0=(A-K,H)P+P(A-K H) +DWD" +K VK
K, =PH'Vyl. =V

Then I;Ms _I:MS+P Eluu']= KIRMSKT
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TrRANSFER FuneTion HoDel OF
Basic Equations of a Single RWM
e The continuous system model in transfer function form:

A(SAs) = B(s)u(s)+C(s)e(s) - (1)

» A(s)=s"-78.55-7.4x10°  the poles are [-55, 133],

> B(s)=-1.6s+541.1

» C(s) = s> + 4.5x10°s-5.9x10°

» The term e(s) is the system noise, including both state noise ¥, and

measurement noise v,,.
e The samplimg rate of the system model is chosen to be 1ms and the resulting

discrete tramsfer function is: (g is the forward shift operator, i.e., qw (k) =y (k+1))
A(@y (k) = B(q)u(k)+ C(q)e(k) (2)
> Alg) = ¢° +aq+a,=q*-2.1g+1.1, B(q)=hq+b =(-1.37q+1.94) x10°

»C(q)=q>+c,g+c, = q>-0.369-6.74=(q-2.78)(q+2.42)



e The optimal output feedback controller requires that C(¢) has all its zeros

mside the unit disc.

» If C(@) has zeros outside unit circle, factorize C=C"C,
where C~ contains all factors with zeros outside the unit circle.

» Replace C~ with its reciprocal form C™ .
» C(@) = (g+1/2.42)(q-1/2.18) = g> +0.05g -0.15
e The broad bamd RMS noise is roughly 1/2 to 1 Gauss

» It is comsidered that the magnitude of the plant noise is a fraction of that
of the measurement noise, SO we assume

w, =3x10"°Weber, y, =2x10"Weber

'0



OPTIMAL OUTPUT FEEDBACK
e The main goal is to minimize both the fluctuation energy of the instabilities

and the control energy simultaneously, so the quadratic cost function is:

: Lo weightong
J= E{(z//(k)) + ou } ‘ 3)
owt Put §ux 7 T tovitvol tnbut

where £ is the relative weight of control energy over fluctuation energy.

e AsSumjipiions:
» €@ pag all its zeros inside the unit disc,

» There is no polynomial which divides 4@, B(@) apq C(@)

Usimg a simillar formalism of calculus of variations one can find the admissible

control law which minimizes (3) with 2 >0 is given by:

R(qu(q)=-S(q)w(q) 4)

?
n



« R(q) and S(9) satisfy the Diophantine equation:

A(@R(q)+ B(9)S(q) = P(9)C(q) (5)
« The polynomial P(g) is the solution of the spectral factorization problem:
rP(q)P(q") = pA(9)A(q™)+ B(q)B(q™") (6)

where ris a coefficient that can be uniquely solved from the above equation.

» P@ gives the closed loop pole of the system.

» Eq.(6) can be solved directly or iteratively.
« The optimal output feedback controller is closely connected to the pole
placement method.

» The solution of the Diophantine equation Eq. (5) can be interpreted as a

pole placement problem. o
N CONCEPT . . .
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Online System Identification

Batch Least Square Method Based on a Deterministic Model

* The deterministic model is used to derive the Batch LS method.
A(CI)'I/ (k) = B(Q)u(k) (7)

oukbuk —7 \'ﬂm ut.

« Apply a sequence of inputs {#(1)...u(k)...u(n)} to the plasma system and a
sequence of outputs 1¥W (D) ... W (k)...w(n)} is obtained.

* Define the parameter vector QT =(a, a, b, b) andthe regression vector

¢ (k=1)=(-w&k-D -yk-2) uk-1) uk-2)), the input-output relation is:

'//(k) ol (k-1 (8)
atar Sk %smss?m Pavemiker vadee
Veeter



4 : \ Ve : \

o| ¥ ED w(k)
e Define: ¥7| :

, Eq. (8) becomes:_ ¥ = P4,
q. ( T‘?\

\¢r (n— 1)) \'l’(") ) Ou'H?ui' veder ‘PA.YM{Z.Y‘ VO—:*W

« The olbjective is to determine the parameter vector € in such a way that the

computed outputs agrees with the output as close as possible in the sense of least
square.

» @ s the estimate of 0.

» The least square loss function is defined as:

V(8,n) =%Z":(w(k)—¢r(k)9)2 )

k=1
» I the matrix (I’:D is ggnsing_u_lar,ue is unique and given by

L@ = (<I>T<I>)—l oY (10)

R e
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Recursive Least Square (RLS) Method

* It i1s desirable to compute the estimate recursively. First, define the covariance

matrix P: P(k) = (@7 (1)@ (k) = (Zk o (i)e’ (i)j_ .

e Eq.(10) can be rewritten as: 6 (k)= P (k)(zlj: o (i)l//(i)] =P (k)(i1 o (i) (i) +¢ (k)w(k)j :
* Use tie definition of P, the following equation is obtained:
fqp(;’)w(i)= P (k-1)6 (k-1)=P " (k)8 (k-1)-o(k)o" (k)8 (k-1),

* The recursive least square (RLS) method takes the form:
weithting  covyrection

Oty =0k -1)+ KXW k) -0 (k)8(k-D)
K(ky=P())o(k) = P(k-D)o(k)(I + 9 (F)P(k - 1)g (k)™

(11)
P(ky=(1-K(k)o" (k)P(k-1)



Extended Least Square (ELS) Method

* The stochastic model Eq. (2) is used to derive the ELS method.
e For a stochastic system, the RLS method Eq. (11) can not be used directly

because the regression vector and the disturbances are correlated, i.e., E [(/)Te] 20,
e Introduce: £(k)=w(k)-¢" (k-1)8(k-1) to estimate the noise term e(k) ,
O=(a,a by b cc,), ¢(k)=(w(k)-w(k-1)u(k)u(k-1)e(k) (k-1)), then the
RLS method can be used. This method is called ELS method.
* The identified system model is shown in Fig.1.

» The convergence time of the system identification is 10ms.

» The value of initial P matrix determines the convergence time.

* The growth rate of the open loop system is shown in Fig.2(a).

6
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Optimal Control of the Identified Model
Optimal Control of the Time Invariant System

A simulation of the optimally controlled time invariant plasma system is
shown.

» Fig.2(b) 1s the damping rate of the close loop time invariant system.

» Fig.3(a) is the estimated controlled plasma current. The RMS value is 420A X3

» Fig.3(b) is the control current. The RMS value is 36A. X 3

» The control response time is 20ms.

“The identification takes 10ms to converge, so the total 30ms.
» The controller stabilizes when the system identification converges.
> p has very big effect on the convergence time. A larger p will increase the

convergence time.
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Extended Least Square (ELS) Method with Forgetting Factor

* The real plasma systems are always dynamic and evolving.

 One method to estimate the slowly time-evolving system parameters is to use
a forgetting factor A, 0 < A < 1, in the identification.

e The ELS method with a forgetting factor becomes:

Ok = Ok — 1)+ K (k) (k) - 9" (k)6 1))

K(ky=P(k)p(k) = P(k—=1)@(k)(AL +¢" (k)P(k -Dp(k)™ (12)
P(ky=(I-K(k)p" (k))P(k-1)/A

e The relationship between the forgetting factor A and the time constant of this

-T,/T
method, Ty, is: A=¢€¢ *

» fast evolution - quick discount of the old data = smaller A.

» slow evolution = slow discount of the old data > larger A.



e Simulation of a time evolving system. The simulation starts with the original
system, then the poles of the open loop system is increased by 10% of the
original value after 50ms and this is repeated ten times. The final poles are two

times the original value.
(—55133) > (-55133)x1.1> (-55133)x1.2 ... > (-55133)x2

* The identified system model is shown in Fig.4.
» The estimator follows the evolution of the system closely. That means this
identification algorithm can be used in an adaptive controller.
* The growth rate of the open loop system is shown in Fig.5(a). The oscillaﬁon

of the growth rate is caused by the change in the system model.



3 ! L L i 4 I 1 I L 1
[+] 50 100 150 200 250 300 350 400 450 500 550
Time(ms)
2 a -
_yl
1.5 N
1
0.5 ! 1 L 1 L I L L . I
o] 50 100 150 200 250 300 350 400 450 500 550
(a) Time(ms)
10 x 10
T L] _::
8 . b a
6 (o] 4
4 H 1
2
o |
.2 L ¥ ! 1 i L ' { 1 1 L
(o] 50 100 150 200 250 300 350 400 450 - 500 550
Time(ms)
x 10°

W‘W
= I

L 1 1
(V] 100 150 200 250 300
(b) Time(ms)

550

Fig.4 Identification of a time evolving system with
forgetting ELS. The solid lines are estimates and the

dashed lines are true values.

Ty
a



300

200 -

100 H

-100 | 1

open IoopTl ]
) Wwica vty fod C 1

-300 -

-400 .

% N M N N N AN O W

100 150 200 250 300 350 400 450 500
(a) Time(ms)

0 T T T T T . . T T '
-400 _
-600 | .
Y
-800 r close loop ﬂ )
-1000 @'@ﬂ:‘g“w‘:@ 'U;& & v .
-1200 .
S N O O O O
0 100 150 200 250 300 350 400 450 500 550
(b) Time(ms)

Fig. 5 Growth rate. (a) is the growth rate of the open
loop system and (b) is the closed loop system. The

arrows indicate where the system change takes place.

903~



Optimal Control of the Time evolving System

« A simulation of the optimally controlled time evolving plasma system is
showm.
» FFig.5(by is the damping rate of the close loop time evolving system.

» Fig.6(a) is the system output measurement.
» Fig.6(b) is the control signal.
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Conclusions Quite
* Plasma ngis¢ and measurement noise modeling is semewhet questionable,
* Compared wiith: the stochastic optimal state feedback control studied before, the optimal

output feedback comtroller is better in some aspects:
» The implementation is simplified,
** The estimation of the system states is unnecessary and the Kalman filter is not needed,
< The optimal control design is simplified,
» Therefore, the system identification and control response time are shorter,
» The systemn identification is more accurate,
* Adaptive optimal control appears to be feasible for slow growing modes like
RWNMs. It is a must for the future magnetic fusion machines.
* In primciple, all plasma instabilities with discrete spectra can be feedback
stabilized (observability and controllability): demonstrated theoretically and

experimentally in CLM.



