Rotational Stabilization of the Resistive Wall Mode in DIII-D

H. Reimerdes¹

in collaboration with

J. Bialek,¹ M.S. Chance,² M.S. Chu,³ A.M. Garofalo,¹ P. Gohil,³ G.L. Jackson,³ R.J. Jayakumar,⁴ T.H. Jensen,³ R.J. La Haye,³ Y.Q. Liu,⁵ J.E. Menard,² G.A. Navratil,¹ M. Okabayashi,² J.T. Scoville,³ E.J. Strait³ and H. Takahashi²

¹Columbia University, New York, New York, USA ²Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA ³General Atomics, San Diego, California, USA ⁴Lawrence Livermore National Laboratory, Livermore, California, USA ⁵Chalmers University of Technology, Göteborg, Sweden

9th Workshop on MHD stability control, 21 - 23 November 2004, Princeton, New Jersey, USA

Outline

- Passive measurement of the plasma rotation required for stability Ω_{crit}
 - Ω_{crit} in two scenarios (low- l_i and moderate- l_i)
 - Comparison with MARS calculations
- Active measurement of growth rate γ_{RWM} and mode rotation frequency ω_{RWM} of the stable n=1 RWM
 - Measurement of γ_{RWM} and ω_{RWM} with **pulsed fields** in the low-*I*_i scenario
 - Measurement of γ_{RWM} and ω_{RWM} with rotating fields in the moderate-I_i scenario
 - Comparison with MARS calculations
- Summary

Plasma rotation predicted to stabilize the RWM

- Resistive Wall mode (RWM): Free-boundary ideal MHD kink mode in the presence of a resistive wall
 - Observed between no-wall and ideal wall ideal MHD limit
 - "Slow" RWM growth $\gamma_{RWM} \sim \tau_w^{-1}$ \rightarrow Stabilization by feedback control
 - "Slow" mode rotation $\omega_{\text{RWM}} \ll \Omega_{\text{rot}}$ \rightarrow Quasi-static magnetic perturbation in a fast plasma flow
- Plasma flow and some dissipation alters linear stability [Bondeson and Ward, *Phys Rev Lett* 72 (1994) 2709]
- Test dissipation models by comparison of predictions with experiment

Several dissipation models are proposed

- Sound wave damping: perturbed plasma rotation v₁ couples to sound waves, which are subject to ion Landau damping [Bondeson and Ward, *Phys Rev Lett* 72 (1994) 2709]
 - Described by a parallel viscous force: $\mathbf{F}_{visc} = -\kappa_{||} \, |\mathbf{k}_{||} \, \mathbf{v}_{th,i} | \, \rho \, \mathbf{v}_{1||}$
 - Cylindrical theory with a free parameter κ_{II} to describe the effects of toroidicty and shaping
- **Kinetic damping**: electromagnetic perturbation kinetically damped through Landau damping process [Bondeson and Chu, *Phys Plasmas* **3** (1996) 3013]
 - No adjustable parameter
- Additional stabilization models
 - Resonance with precession drift frequency [Hu and Betti, Phys Rev Lett 93 (2004) 105002]
 - Neoclassical toroidal viscosity [Shaing, Phys Plasmas 10 (2003) 1443]
- Main computational tool is the MARS-F code [Liu et al, *Phys Plasmas* 7 (2000) 3681], which includes sound wave or kinetic damping model

How much plasma rotation is required to stabilize the n=1 RWM?

- Passive measurement of $\Omega_{\rm crit}$
 - Insufficient error field correction causes slowdown of toroidal rotation
 - Onset of RWM marks $\Omega_{\rm crit}$
- Systematic scan of β in a low-l_i plasma [R.J. La Haye et al, accepted for publication in *Nucl. Fusion*]
 - Ω_{crit} scales with τ_{A}^{-1}
- Additional data in a moderate-*I*, plasma

Equilibrium profiles of low-*I*_i and moderate-*I*_i scenarios

- Low-*I*_i scenario greatly benefits from wall stabilization
 - $\beta_{N,no-wall}$ ~1.6~2.4 I_i
 - $\beta_{N,ideal-wall} \sim 3.2 \ (\sim 4.8 \ l_j)$

- Moderate-*I*_i scenario has a higher no-wall limit
 - $\beta_{N,no-wall}$ ~2.0 ~2.4 I_i
 - $\beta_{N,ideal-wall} \sim 3.2 (\sim 3.8 I_i)$
- Moderate-li scenario has a higher safety factor q_{95} (includes q=5 and 6 surfaces)

MARS predictions of Ω_{crit} in qualitative agreement with measurements

- Low- I_i scenario yields $\Omega_{crit} \tau_A \sim 0.02$ with weak β dependence [R.J. La Haye et al, accepted for publication in *Nucl. Fusion*]
- Moderate-*I*_i scenario yields significantly lower Ω_{crit} [G.L. Jackson et al, APS 2004]
- Both damping models predict $\Omega_{\rm crit}$ within a factor of 2
- Both models predict the trend of a lower Ω_{cri} in the moderate- I_i scenario

Probe RWM stability by applying an external resonant magnetic field while the plasma remains stable

• Resonant field amplification (RFA):

Resonant external magnetic fields excite a marginally stable mode [Boozer, *Phys Rev Lett* **86** (2001) 1176]

- Source of external field can be currents in control coils or intrinsic error field
- RFA amplitude defined as ratio of plasma response and applied field

$$A_{RFA,s} = \frac{B_s - B_s^{ext}}{B_s^{ext}}$$

Complex notation:

$$f(t, \varphi) = \Re(F(t) \cdot e^{-in\varphi})$$
 where φ is the toroidal angle

Experimental setup: Antennas: 6 external (C-coil) and 12 internal (I-coil) saddle coils Static or rotating magnetic field with large overlap with RWM structure at the wall.

Detectors: Toroidal arrays of saddle loops and poloidal field probes

9th Workshop on MHD Stability Control, Princeton 2004

• Applied I-coil field ~ 10 Gauss/kA

- Linear response
 - Amplitude depends on sensor:
 "MPI": midplane poloidal field probes
 "ESL": midplane saddle loops

Single-mode models describe interaction between externally applied fields and the RWM

• The "Simple" RWM model [Garofalo, et al, *Phys Plasmas* 9 (2002) 4573] and the extended lumped parameter model [Chu et al, *Nucl Fusion* 43 (2003) 196], both, yield

$$\tau_w \frac{dB_s}{dt} - \tau_w \gamma_0 B_s = M_{sc}^* I_c$$

for the perturbed field B_s and currents in the control coils I_c

• The RWM growth rate for in the absence of external currents $\gamma_0 = \gamma_{RWM} + i \omega_{RWM}$ is given by the dispersion relation:

- 'Simple' RWM model:

with $\Lambda = -(\phi' / \phi) \Big|_{W}$

- Extended lumped parameter model:

with *D* describing the dissipation

- Ideal MHD with rotation and dissipation: $\gamma_0 \tau_w$

$$\gamma_0 \tau_w = \frac{1}{2} \left(\frac{\Lambda}{k} - 1 \right)$$

$$\gamma_{0}\tau_{w} = -\frac{\delta W_{no-wall} + i\Omega_{rot}D}{\delta W_{ideal-wall} + i\Omega_{rot}D}$$

 τ_w from MARS

Dynamic response to resonant field pulses consistent with single-mode model

Response to static pulse

$$A_{RFA,s} = C_s \frac{1 + \gamma_0 \tau_W}{-\gamma_0 \tau_W}$$

with $C_s = M_{sc}^* / M_{sc}$ being the ratio of the resonant component and the total externally applied field yields γ_0

• Decay of perturbation after pulse $B_s(t) = B_s(t_0) e^{\gamma_0 t}$ yields independent measurement of γ_0

[Garofalo et al, Phys. Plasmas 10 (2003) 4776]

Dynamic response to C-coil pulses yields a measurement of the RWM damping rate and mode rotation frequency

[Garofalo et al, Phys Plasmas 10 (2003) 4776]

- **Low-** l_i target ($l_i \sim 0.67$)
- Optimum error field correction sustains plasma rotation at $\Omega_{rot} \tau_W \sim 0.02$ at q=2
- Apply n=1 field pulses with C-coil
- Best fit of RFA amplitude, phase and exponential decay to single-mode model yields γ_0
- Plasma approaches marginal stability at $C_{\beta}{\sim}0.6$
 - consistent with measured $\Omega_{crit} \tau_W \sim 0.02$
- Mode rotation frequency is low (fraction of τ_w^{-1}) and has a weak β dependence

MHD spectroscopy probes the RWM stability while the plasma remains stable

- Moderate- I_i target $(I_i \sim 0.85)$
- Apply rotating n = 1 field with I-coil
- Coherent detection

- Largest plasma response for slowly co-rotating field
- Plasma response leads external field if rotation slower and trails if rotation faster than rotation of larges response

9th Workshop on MHD Stability Control, Princeton 2004

RFA peaks when the externally applied field rotates with the mode rotation frequency

[Reimerdes et al, *Phys Rev Lett* **93** (2004) 135002]

• Single-mode model predicts RFA spectrum

$$A_{RFA,s} = C_s \cdot \frac{1 + \gamma_0 \tau_w}{i\omega_{ext}\tau_w - \gamma_0 \tau_w}$$

- Fit of γ_0 and c_s results in good agreement
 - Single-mode model applicable
 - RFA spectrum yields a measurement of γ_0 (**MHD spectroscopy**)

MHD spectroscopy yields a measurement of the RWM damping rate and mode rotation frequency

- MHD spectroscopy in moderate- I_i target yields β dependence of γ_0
- Optimum error field correction sustains plasma rotation at $\Omega_{rot} \tau_W \sim 0.02$ at q=2

- Growth rate is lower than in low- I_i scenario and remains below marginal stability up to $C_\beta \sim 1$
 - consistent with measured $\Omega_{crit} \sim 0.01 \, \tau_W^{-1} << \Omega_{rot}$
- Mode rotation frequency is low (fraction of τ_W^{-1}) and has a weak β dependence, similar to low- l_i scenario

Comparison with MARS

- Both models predict γ_{RWM} too low

- Kinetic damping predicts experimental ω_{RWM} while the sound wave damping prediction is too high

Summary

- Interaction between an externally applied magnetic field and a high- β plasma at various frequencies is well described by a single mode approach
 - Validation of the single mode approach (basis of RWM feedback models)
 - Absolute measurement of RWM damping rate γ_{RWM} and mode rotation frequency ω_{RWM}
- Passive measurement of the critical plasma rotation Ω_{crit} , and active measurement of γ_{RWM} and ω_{RWM} carried out in two scenarios (low- I_i and moderate- I_i)
 - Low-I_i scenario requires more rotation for stability → importance of rational surfaces at plasma edge for damping process
- Comparison of RWM stability measurements with sound wave damping and kinetic damping implemented in the MARS code
 - Both damping models reproduce the weaker damping in the low- l_i scenario and predict Ω_{crit} within factor of 2
 - Both damping models overestimate $I\gamma_{\text{RWM}}I$ or $I\omega_{\text{RWM}}I$ or both
- Progress towards a quantitative test of our understanding of rotational stabilization requires further development of experiment and theory

