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Outline

• Passive measurement of the plasma rotation required for stability Ωcrit

– Ωcrit in two scenarios (low-li and moderate-li)

– Comparison with MARS calculations

• Active measurement of growth rate γRWM and mode rotation frequency
ωRWM of the stable n=1 RWM

– Measurement of γRWM and ωRWM with pulsed fields in the low-li scenario

– Measurement of γRWM and ωRWM with rotating fields in the moderate-li
scenario

– Comparison with MARS calculations

• Summary
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• Resistive Wall mode (RWM):
Free-boundary ideal MHD kink mode in
the presence of a resistive wall

– Observed between no-wall and
ideal wall ideal MHD limit

– “Slow” RWM growth γRWM ~ τw
-1

→ Stabilization by feedback control

– “Slow” mode rotation ωRWM << Ωrot
→Quasi-static magnetic
perturbation in a fast plasma flow

• Plasma flow and some dissipation
alters linear stability [Bondeson and Ward,
Phys Rev Lett 72 (1994) 2709]

➔Test dissipation models by comparison
of predictions with experiment

Plasma rotation predicted to stabilize the RWM
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• Sound wave damping: perturbed plasma rotation v1 couples to sound waves,
which are subject to ion Landau damping [Bondeson and Ward, Phys Rev Lett  72 (1994) 2709]

– Described by a parallel viscous force:   Fvisc = -κ|| |k|| vth,i| ρ v1||

– Cylindrical theory with a free parameter κ|| to describe the effects of toroidicty
and shaping

• Kinetic damping: electromagnetic perturbation kinetically damped through Landau
damping process [Bondeson and Chu, Phys Plasmas 3 (1996) 3013]

– No adjustable parameter

• Additional stabilization models
– Resonance with precession drift frequency [Hu and Betti, Phys Rev Lett 93 (2004) 105002]

– Neoclassical toroidal viscosity [Shaing, Phys Plasmas 10  (2003) 1443]

• Main computational tool is the MARS-F code [Liu et al, Phys Plasmas 7 (2000) 3681], which
includes sound wave or kinetic damping model

Several dissipation models are proposed
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How much plasma rotation is required
to stabilize the n=1 RWM?

• Passive measurement of Ωcrit

– Insufficient error field
correction causes slow-
down of toroidal rotation

– Onset of RWM marks Ωcrit

• Systematic scan of β in a
low-li plasma [R.J. La Haye et al,
accepted for publication in Nucl.
Fusion]

– Ωcrit scales with τA
-1

• Additional data in a
moderate-li plasma
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Equilibrium profiles of low-li and moderate-li scenarios

• Low-li scenario greatly benefits from
wall stabilization
– βN,no-wall    ~ 1.6 ~ 2.4 li
– βN,ideal-wall ~ 3.2 ( ~ 4.8 li)

• Moderate-li scenario has a
higher no-wall limit
– βN,no-wall    ~ 2.0 ~ 2.4 li
– βN,ideal-wall ~ 3.2 ( ~3.8 li)

• Moderate-li scenario has a higher safety factor q95 (includes q=5 and 6 surfaces)



9th Workshop on MHD Stability Control, Princeton 2004

MARS predictions of Ωcrit in qualitative agreement
with measurements

• Both damping models predict Ωcrit within a factor of 2

• Both models predict the trend of a lower Ωcri in the moderate-li scenario

• Low-li scenario yields Ωcrit τA  ~  0.02
with weak β dependence [R.J. La Haye et
al, accepted for publication in Nucl. Fusion]

• Moderate-li scenario yields
significantly lower Ωcrit
[G.L. Jackson et al, APS 2004]
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Probe RWM stability by applying an external resonant
magnetic field while the plasma remains stable

• Resonant field amplification (RFA):

Resonant external magnetic fields excite a marginally stable mode
[Boozer, Phys Rev Lett 86 (2001) 1176]

– Source of external field can be currents in control coils or intrinsic error field

– RFA amplitude defined as ratio of plasma response and applied field

Complex notation:                                               where ϕ is the toroidal angle
€ 

ARFA,s =
Bs −Bs

ext

Bs
ext

€ 

f t,ϕ( ) = ℜ F t( ) ⋅e−inϕ( )
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Experimental setup:
Antennas: 6 external (C-coil) and

12 internal (I-coil)
saddle coils

Static or rotating
magnetic field with
large overlap with RWM
structure at the wall.

Detectors: Toroidal arrays of
saddle loops and
poloidal field probes

DIII-D has versatile sets of antennas and detectors

ESL

MPI
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Plasma response is in the linear regime

• Applied I-coil field ~ 10 Gauss/kA • Linear response

– Amplitude depends on sensor:
“MPI”: midplane poloidal field probes
“ESL”: midplane saddle loops
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• The “Simple” RWM model [Garofalo, et al, Phys Plasmas 9 (2002) 4573] and the extended
lumped parameter model [Chu et al, Nucl Fusion 43 (2003) 196], both, yield

for the perturbed field Bs and currents in the control coils Ic

• The RWM growth rate for in the absence of external currents γ0=γRWM + i ωRWM is
given by the dispersion relation:

– ‘Simple’ RWM model:

with

– Extended lumped parameter model:

with  D   describing the dissipation

– Ideal MHD with rotation and dissipation:               from MARS

Single-mode models describe interaction
between externally applied fields and the RWM
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γ0τw = 1
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γ0τw = −
δWno−wall + iΩrotD
δWideal−wall + iΩrotD
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Λ = − ′ φ / φ( )w
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• Response to static pulse

with                               being the ratio of the resonant component and the total
externally applied field yields γ0

• Decay of perturbation after pulse                                       yields independent
measurement of γ0

Dynamic response to resonant field pulses
consistent with single-mode model

€ 

ARFA,s = cs
1+ γ0τW
−γ0τW

€ 

cs =Msc
* Msc

€ 

Bs t( ) = Bs t0( ) eγ0t

[Garofalo et al, Phys. Plasmas 10 (2003) 4776]
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Dynamic response to C-coil pulses yields a measurement
of the RWM damping rate and mode rotation frequency

• Low-li target (li ~ 0.67)

• Optimum error field correction sustains
plasma rotation at ΩrotτW ~ 0.02 at q = 2

• Apply n=1 field pulses with C-coil

• Best fit of RFA amplitude, phase and
exponential decay to single-mode model
yields γ0

• Plasma approaches marginal stability at
Cβ ~ 0.6

– consistent with measured ΩcritτW ~ 0.02

• Mode rotation frequency is low (fraction of
τW

-1) and has a weak β dependence

[Garofalo et al, Phys Plasmas 10 (2003) 4776]
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• Moderate-li target (li ~ 0.85)

• Apply rotating n = 1 field with I-coil

• Coherent detection

• Largest plasma response for slowly
co-rotating field

• Plasma response leads external
field if rotation slower and trails if
rotation faster than rotation of
larges response

MHD spectroscopy probes the RWM stability
while the plasma remains stable
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• Single-mode model predicts RFA spectrum

• Fit of γ0 and cs results in good agreement

– Single-mode model applicable

– RFA spectrum yields a measurement
of γ0 (MHD spectroscopy)

RFA peaks when the externally applied field rotates
with the mode rotation frequency

€ 

ARFA,s = cs ⋅
1+ γ0τw

iωextτw − γ0τw

[Reimerdes et al, Phys Rev Lett 93 (2004) 135002]
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MHD spectroscopy yields a measurement of the RWM
damping rate and mode rotation frequency

• MHD spectroscopy in moderate-li
target yields β dependence of γ0

• Optimum error field correction sustains
plasma rotation at ΩrotτW ~ 0.02 at q = 2

• Growth rate is lower than in low-li
scenario and remains below marginal
stability up to Cβ ~ 1

– consistent with measured
Ωcrit ~ 0.01 τW

-1
 << Ωrot

• Mode rotation frequency is low (fraction
of τW

-1) and has a weak β dependence,
similar to low-li scenario
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Comparison with MARS

• Both models predict γRWM too low

• Kinetic damping predicts experimental ωRWM while the sound wave
damping prediction is too high
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Summary

• Interaction between an externally applied magnetic field and a high-β plasma at
various frequencies is well described by a single mode approach

– Validation of the single mode approach (basis of RWM feedback models)
– Absolute measurement of RWM damping rate γRWM and mode rotation

frequency ωRWM

• Passive measurement of the critical plasma rotation Ωcrit, and active measurement
of γRWM and ωRWM carried out in two scenarios (low-li and moderate-li)

– Low-li scenario requires more rotation for stability ➔ importance of rational
surfaces at plasma edge for damping process

• Comparison of RWM stability measurements with sound wave damping and kinetic
damping implemented in the MARS code

– Both damping models reproduce the weaker damping in the low-li scenario and
predict Ωcrit within factor of 2

– Both damping models overestimate |γRWM| or |ωRWM| or both

• Progress towards a quantitative test of our understanding of rotational stabilization
requires further development of experiment and theory


