

RFX Program on Active Control

Consorzio RFX - Associazione Euratom-ENEA sulla fusione - Padova, Italy

Presented by Stefano Martini

at the 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS": NOVEMBER 21-23, 2004, PPPL

Hopefully this is the last workshop...

OPS...

I FORGOT A SLIDE FROM LAST YEAR WORKSHOP!

COVERING THE WHOLE PLASMA SURFACE

The RFP dynamo

 The current profile in a RFP cannot be driven in steady state by a constant inductive electric field *E*_o

but RFP plasmas last much longer than the resistive diffusion time! (actually, as long as *E*_o is applied)

 An additional "dynamo" electric field E_d is necessary to maintain the toroidal magnetic flux.

CONSORZIO RFX

Turbulent dynamo: self-organization

A wide experimental and numerical database supports the MHD turbulent dynamo theory:

 $\left| \vec{E}_{d} - \left\langle \widetilde{v} \times \widetilde{b} \right\rangle \right|$

E_d is produced by the coherent (non-linear) interaction of many MHD modes => Multiple Helicity (MH) dynamo

m=1 "dynamo" modes (resonant inside the Bt reversal surface)

m=0 non-linearly generated and/or linearly unstable

Magnetic stochasticity allover the plasma !

The slinky

Each mode is associated to an helical perturbation of the plasma

The Phase Locking of many modes results in a non-axisymmetric deformation, the so-called "slinky" t [ms] #12461

Braking torques by the vessel and fi errors cause Wall Locking of the slink

Localised plasma-wall interaction \Rightarrow 100 MW/m²

ONSORZIO RFX Previous MHD control experiments

Previously MHD mode control on RFX based on :

- Reduction of field errors
- Control of modes via the B\u03c6 coils:
 - Active control of poloidal current:
 Pulsed => PPCD
 - Oscillating => OPCD
 - Active rotation of the locked modes (RTFM)

Pulsed Poloidal Current Drive

External poloidal current drive (first tested on MST) transiently quenches the spontaneous dynamo.

Strong reduction of magnetic fluctuations and improved confinement

Oscillating Poloidal Current Drive

The $B\phi$ coils produce a traveling m=0 perturbation which exerts torque on q=0 island:

$$T_z^{0,1} \propto b_r^{0,1} B_r^{0,1}(r,1) \sin(\Delta \phi_{0,1})$$

Rotation opposed by drag of eddy currents in resistive vessel

$$T_{visc}^{m,n} \propto (b_r^{m,n})^2 \omega$$

A sufficiently high external field $B_r^{0,1}$ overcomes the drag and lock in phase the 0,1 mode

Continuous Induced Rotation CONSORZIO RFX Enforcing the proper phasing during the start-up phase: continuous rotation for the whole discharge t [ms] #12350 80 60 40 20 I1 cm 0 90 180 270 360 toroidal angle Φ (deg)

Three mode interaction

• m=1 modes experience a non linear torque: $T_z^{1,n} \propto C_n b_r^{1,n} b_r^{1,n+1} b_r^{0,1} \sin(\phi^{1,n+1} - \phi^{1,n} - \phi^{0,1}) + C_{n-1} b_r^{1,n} b_r^{1,n-1} b_r^{0,1} \sin(\phi^{1,n-1} - \phi^{1,n} + \phi^{0,1})$

for sufficiently high external field:

- high n modes will co-rotate with (0,1) ext. perturbation
- low n modes will counter-rotate

• in general =>
$$\omega^{1,n+1} - \omega^{1,n} = \omega^{0,1}$$

1MA Pulses with & without rotation

NO rotation

with rotating modes

The Single Helicity (SH) dynamo

- a theoretically predicted state with a unique m = 1 saturated resistive kink (<u>a pure helix wound on a torus</u>),
- Stationary LAMINAR dynamo mechanism with good helical flux surfaces

Escande et al., PRL 85 (2000)

Magnetic order with SH dynamo

Good magnetic flux surfaces in SH

SH

Turbulent (MH)

The mode spectrum is dominated by one geometrical helicity

Therefore, with the aim of making a new step (hopefully) forward along the path to the "good RFP" we now have...

QSH alleviate the problems, but are not sufficient to reach the design target 2MA regime.

First plasma with the new assembly mid December 2004

Mode dynamics in RFPs

- Experimental evidence in several RFPs shows that the evolution of MHD modes, including the dynamo modes, depends on the magnetic boundary, and in particular on the shell:
 - thickness
 - proximity
 - geometry

Conducting shell in RFPs

Scenarios for MHD control in the new RFX depend crucially on the effect of the modifications to shell geometry, proximity and time constant

Experiment	R/a m	b/a	$ au_{shell}ms$	τ_{pulse} ms	$ au_{pulse}/ au_{shel}$	
RFX92	2/0.457	1.24	450 150		1/3	
RFX new	2/0.459	1.11	50	150 ?	3?	
MST	1.5/0.51	1.07	400	60-90	_	
TPE RX	1.72/0.45	1.08 1.16	10 330	60	6 1/5	
T2R	1.24/0.183	1.08	6	20	>3	

Conclusions on mode rotations

- Dynamo modes are spontaneously rotating in RFP devices with close fitting shell (even if a threshold in current might exist)
- Externally resonant RWM are seen in RFPs. Their growth time agrees with the shell time constant and they do no rotate
- There is a reasonable basis for spontaneous rotation of dynamo modes in the new RFX

Mode control experience in T2R

- As shown in previous talks by
 - Jim Drake (yesterday)
 - Roberto Paccagnella (today)
- During the last year a fruitful collaboration between the T2R and the RFX groups permitted to perform very interesting experiments on active mode control on T2R

Feedback experiments on T2R

Amplitude and angular phase velocity for resonant tearing mode m=1, n=-14.

From: P. R. Brunsell, et al., "First results from intelligent shell experiments with partial coil coverage in the EXTRAP T2R reversed field pinch", 31st EPS, ECA Vol.28G, P-5.190 (2004) See also: P. Brunsell et al., Feedback stabilization of multiple resistive wall modes, to be published on PRI

Rotating n=6 perturbation:. Freq.=100 Hz, ϕ_0 =0, different amplitudes.

T2R experience with mode control

- Open loop experiments¹ clearly showed intrinsic error field reduction or amplification, depending on amplitude and phase of the applied external field.
- Feedback operations have shown clear reduction of MHD mode amplitudes and beneficial effects on plasma-wall interaction.
- Intelligent shell and individual/ multiple mode control schemes successfully implemented and compared
- ¹ A B + Preke o Operioloopf control experimenter in FXTRAP 22 R RFP, yesterday talk

Main new components:

- 1. new toroidal field power supply
- 2. first wall with higher power handling capabilities
- 3. smoother and thinner shell
- 4. 192 saddle coils, covering the whole plasma boundary, each independently powered and feedback controlled
- 5. in-vessel system of magnetic and electrostatic probes

m=0 x RTFM & PPCD/OPCD

		Modified RFX			<i>RFX</i> 92	
Control strategy	Amplitude	Period (ms)	F (H z)	Amplitude	Period (ms)	F (H z)
RTFM m=0, n=1: B _{twall} control	58 mT	40	25	10 mT	40	25
PPCD: V _{pol} control	10 V	10	125	9 V	10	125
OPCD: V _{pol} control	10 V	3 - 8	125 - 333	3 V	7	140
		B _{tor}	new ≈ t 25 Hz	6 x B _{tor} with 3k/	old A	

Compared to RFX 92 RTFM capability greatly enhanced, which is of utmost importance since

•RTFM was not possible at high density in RFX92

The new shell

• One 3 mm Cu layer:

- 1 overlapped poloidal gap: 23° toroidal overlap
- 1 toroidal gap on high field side

New saddle coil system

- 4 poloidally: 90°
- 48 toroidally: 7.5°
- Complete toroidal coverage

each independently powered 24 kAt: 400 A × 60 turns

Wide spectrum of Fourier components :

Ex-vessel magnetic and thermal probes

Probes between vessel and shell

Integral probes:

CONSORZIO RFX

- 4 Rogowski coils for I_D
- 8 toroidal voltage loops
- 6 poloidal voltage loops
- 32 partial V_{POL} probes for halo currents
 48×4 saddle probes for B_r
- 48 saddle coils for B_r (on eq.plane)
- Pick up probes (40×36×4 mm bi-axial) probe for B_T and B_P enamelled wire coils wound around single core):
 - 48 toroidal × 4 poloidal distribution
 - 2 higher resolution poloidal arrays

Magnetic probes total number ≈ 650

Thermocouples:

Aim of RFX modifications

- Improve the design of the plasma front end
 - First wall power handling capability;
 - Vessel wall protection;
 - Plasma breakdown;
 - Axisymmetric equilibrium control;
 - Poloidal gap field error;
 - Toroidal gap field error.

Improve the active control of the MHD modes

- Increase the torque applied to the plasma through the m=0 mode for RTFM
- Produce m=1, n= 1-20 single o multiple mode to induce: mode rotation, "single helicity" and to actively control ext.& int. modes

Low current scenario

- Theory (Guo, Fitzpatrick et al) and experiments (TPE-RX, EXTRAP T2R, MST) suggest that at low current RFX should see spontaneous dynamo mode rotation.
- This is suitable to concentrate efforts on RWM control

High current scenario (> 1 MA)

- Better for confinement improvement techniques (OPCD) and for interaction with "dynamo" modes (but higher walllocking probability).
- Passive shell (and EXTRAP T2R experience) might postpone RWM issue up to ≈50-100 ms

Benchmark and improve old RFX performance

Actions by an applied m=0 mode (TF coils):

a. RTFM (also in closed loop mode)

b. PPCD/OPCD

c. OPCD+ RTFM

d. OFCD

Active actions through 192 saddle coils:

- Apply m =1 magnetic perturbations
 - Work on individual modes: one at the time or several simultaneously
- Realize an intelligent shell
 - Zeroing of radial field at the edge to maintain an effective close fitting shell.
 - Interesting also for QSH studies, since a smooth magnetic boundary facilitates their onset.

Drive of m=1 magnetic perturbations

- Apply a monochromatic perturbation to affect one individual mode:
 - "pumping" the mode to drive QSH states through helical fields at the plasma boundary
 - Feedback stabilization of individual modes
 - inducing rotation of a single mode
- Apply several simultaneous geometrical helicities (various n's):
 - damping of main "dynamo modes"
 - feedback stabilization of RWM
 - breaking phase locking among "dynamo modes" with induction of modes differential rotations

2005 RFX program

- Plasma pulses start mid December 2004. The program for 2005 envisages 45 weeks of operation including 11 weeks of machine commissioning and 34 with plasma.
- Aim of first year is to test most of the increased flexibility of RFX covering many programs, including a first assessment of enhanced confinement regimes and active control of MHD instabilities.

Main objectives of first year

- Maximise the parameter range for spontaneous fast rotation of tearing modes.
- Establish a clear comparison with the reference passive operation of the old RFX.
- Explore scenarios for enhanced confinement.
- Active control of MHD instabilities:
 - feedback stabilisation of RWM,
 - control of single and multiple m=0,1 tearing modes
 - intelligent/wise shell.

2005 planning

				Qtr 1, 2005			Qtr 2, 2005				Qtr 3, 200	5		Qtr 4, 2005		
0	Task Name	Duration	Dec	Jan	Feb	Mar	Apr	M	lay	Jun	Jul	Aug	Sep	Oct	Nov	Dec
11	SD1 - diagnostic	9 days	27/12	07/01												
	integration		_													
THE	C1 - commissioning	4 wks	10	/01	-04/02											
	c. comociona		10.		04/02											
à	EW-1 wall conditioning	2 days			*											
~	W-1 wan conditioning	,			l I											
a.	Dd	2 wko			<u> </u>											
1	P1 - plasma	2 1755		07/0	2	18/02										
-																
1	C2 - commissioning	3 wks			21/02	11/03										
1	P2 - plasma: l°phase	6 wks				14/03		2/04								
								1								
1	SD2 - diagnostic	3 wks					25/04		12005							
×	integration						25/04	-	13/05							
de.	FW 2 well conditioning	3 days						-								
1	FW-2 wall conditioning	5 00,5							η							
4									-							
1	P2 - plasma: ll°phase	6 WKS						17/05			27/06					
	C3 - commissioning	4 wks								28/06		25/07				
1	P3 - plasma	12 wks									26/07				25/10	
Ľ	, o presidente										20/07				0.10	
	SD3: maintenance	1 wk														
	5D5. maintenance											16/08 2	2/08			
1	B4 alternation de d	8 wko												<u> </u>		
	P4 - plasma: extended	OWNS												26/10		20
	P2&P3 campaigns															
	end of 2005 campaign	0 days														
																<u> </u>
Sh	utdown:	6 wee	ks			Thu 21/	10/04									v.1
Co	mmissioning	11 wee	eks													
Pla	anned experimental campaigns	: 26 wee	ks + 8 \	weeks (e	xtensi	ion and/o	r mainte	enan	ce)							

P2 e: feedback control of m=0 modes

- Simulations show that the transport in the q=0 region is determined by amplitude and phases of m=0 and m=1 modes
- Acting on the phases of m=0 modes can influence closed structures in the reversal region
- Minimising m=0 amplitudes is important also for favouring QSH

CONSORZIO RFX P2 g: experiments on QSH

- Investigate conditions which help onset of QSH states
 - Parameter scans
 - Magnetic boundary optimization
 - Feedback controlled equilibrium
 - P/OPCD

Diagnostic improvements will allow

- Particle and energy confinement studies
- Ion dynamics measurements
- Determination of the plasma flow correlated with QSH

- Aim: suppressing the dynamo and establishing the confinement and β limits for the RFP configuration
- Rationale: 3-D MHD simulations show that a stochastic plasma reaches a condition of low amplitude modes by applying proper time-dependent magnetic boundary conditions (R.A.Nebel et al, PoP 2002)
- The decay rate is about $-\gamma \approx -10/\tau R$
- In RFX a first test of this prediction will be performed

CONSORZIO RFX

P2 i: Oscillating Field Current Drive

and plasma regimes)

P3 1b: Active Control of tearing modes

Open loop and feedback control on single/multiple dynamo modes including:

induction of QSH regimes

ONSORZIO REX

 drag of locked tearing modes into slow rotation and control of their relative phases.

Encouraging results from T2R:

- Pre-programmed helical perturbations with resonant helicities (open-loop)
- Feedback suppression of other reconant modes (closed loop)

RFX-Tokamak operation

- With its highly flexible diagnostic and control system, RFX could contribute also to studying MHD mode control on tokamak plasmas
- A maximum Bφ = 0.6 T allows us to set up a Tokamak with:
 - v I = 100 kA @ q(a)=3
 - A total flux swing of 6-7 Vs permits to sustain the plasma for times much longer than the 50 ms shell time constant
- We are open to suggestions/proposal for collaborations also in this area!

