



# Plasma response to *m/n*=3/1 helical perturbation fields generated by the Dynamic Ergodic Divertor (DED) on TEXTOR

H R Koslowski<sup>1</sup>, Y. Liang<sup>1</sup>, O. Zimmermann<sup>1</sup>, A. Krämer-Flecken<sup>1</sup>, M. de Bock<sup>2</sup>, K. H. Finken<sup>1</sup>, R. Jaspers<sup>2</sup>, E. Westerhof<sup>2</sup>, R. Wolf<sup>1</sup>, and TEXTOR-team

<sup>1</sup>Forschungszentrum Jülich GmbH, Institut für Plasmaphysik\*, Association EURATOM-FZJ, D-52425 Jülich, Germany

<sup>2</sup>FOM-Institute for Plasma Physics Rijnhuizen\*, Assoc. EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein, The Netherlands

\* partners in the Trilateral Euregio Cluster

# Outline

- Setup of the Dynamic Ergodic Divertor on TEXTOR
- Structure of the m/n=3/1 perturbation field
- Threshold for mode locking
- Onset scalings of error field induced modes
- Summary and conclusion

# **TEXTOR Dynamic Ergodic Divertor (DED)**.



MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

# .. consists of 16(+2) helical coils on the HFS



MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

# **Schematic setup of the DED 3/1 configuration**

# **DED parameters**

- 16 coils (+2 compensation coils) mounted on the HFS
- Helical pitch resonant to q=3 field lines
- Configurations
  - 12/4 : PSI studies, divertor properties
  - (6/2)
  - 3/1 : Perturbation field and MHD studies
- Currents
  - up to 15kA/coil
- Frequencies
  - dc
  - low f ac (2Hz), field rotation in co- and counter current direction
  - high f ac (1 .. 10 kHz)

## **Structure of the perturbation field**



MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

7

# **Amplitudes of the** *n***=1 Fourier components**



MHD workshop, Princeton, 2004-11-21

H R Koslowski - FZ Jülich



# **Pre-existing m/n=2/1 tearing mode locks**

# **Typical discharge for error field experiments**



- DED in 3/1 configuration
- $B_t = 2.25 \text{T}, I_p = 300 \text{kA}$
- $q_{\rm a.cvl}$ ~4.5
- co-NBI ~ 300kW
- at critical DED current  $(\sim 0.7 \text{kA})$  a 2/1 tearing mode is excited
- effect is highly reproducible
- dependence on electron density, heating power (beta), and plasma rotation has been studied

MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

# **Tearing mode is created during DED phase**



11

# **Electron density profile shows locked mode**



# **Braking of toroidal rotation**

**TEXTOR #94089** x 10<sup>4</sup> toroidal rotation decreases when 2 mode is created 1.5-[rad/s]  $v_{\rm tor}$  profile indicates rigid body rotation (between  $r_{q=1}$  and 0.5 $r_{q=2}$ ) 1.8 1.9 0 2 3.5 3 2.5 2 1.5 [m] [s]

time

# Mode numbers are *m*=2 and *n*=1



#### mode numbers analysed with phase comparison method

MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

#### **Phase inversion of SXR data indicates tearing mode**

TEXTOR #94461 SXR



#### Saturated island width up to 20% of minor radius



# With ac DED mode is "locked" to external perturbation



17

# **Density scaling of the critical error field**



MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

# **Beta dependence of mode threshold**



### **Toroidal plasma rotation <u>decreases</u> mode threshold!?**



# **Influence of plasma rotation on mode threshold**



#### **Plasma parameters are constant for rotation scan**



# **Rotation dependence: JET results are different**



MHD workshop, Princeton, 2004-11-21 H R Koslowski - FZ Jülich

# $B_{\rm t}$ -scan with $q_{\rm a}$ =const



MHD workshop, Princeton, 2004-11-21 H F

H R Koslowski - FZ Jülich

# Summary

- TEXTOR-DED in 3/1 configuration allows to study the onset of error field generated 2/1 tearing modes
- First parameter scans were performed
- Density dependence of locked mode onset threshold agrees with other tokamaks (JET, DIII-D, C-mod)
- No clear  $B_t$  dependence of the mode threshold found
- ICRH heating (beta) has a strong stabilizing effect
- Co-NBI is found to destabilize the 2/1 mode, counter-NBI has a strong stabilizing influence
- TEXTOR data does not agree with JET results

# **Outlook and future work**

- Continue detailed investigations of mode onset threshold vs toroidal plasma rotation
- Study  $B_t$  dependence of mode onset
- Analyze data with 1kHz ac DED, is there any influence of the rotating field?
- Understand difference to JET experiments
- TEXTOR experiments within the ITPA framework