9th Workshop on MHD Stability Control "Control of MHD Stability: Back to the Basics" Nov. 21-23, 2004, PPPL

Stability Control for Steady-State High-Beta in JT-60U

- Introduction
 - -- Modification of JT-60U for long duration (65s) discharges
- Long-duration high- β_N plasma (β_N =2.5 for ~10 τ_R , β_N =1.9 for ~15 τ_R)
- High- β_N (~3) by NTM suppression
- Measurement of NTM structure
- Summary

JT-60U

Extension of discharge duration to 65s

JT-60U

Toroidal field : 3.3T for 30s, 2.7T for 65s Tangential P-NB (4 units): 30s injection (<- formerly 10s) N-NB: ~2MW for 30 s

Operational regime before 2003

- Region of sustained beta has been significantly extended.
 - $\beta_N \sim 2.5$ (~advanced operation in ITER) for 16.5s, $\sim 10\tau_R$
 - $\beta_N \sim 1.9$ (~inductive operation in ITER) for 24s, $\sim 15\tau_R$
- Low collisionality & Larmor radius regime: ν*/ν*ITER~3, ρ*/ρ*ITER~3
- NTM in longtime scale: not observed so far (at $\beta_N \sim 2.5$)

- $\beta_N \sim 1.9$ (~inductive operation in ITER) for 24s, $\sim 15\tau_R$
- Low collisionality & Larmor radius regime: ν*/ν*ITER~3, ρ*/ρ*ITER~3
- NTM in longtime scale: not observed so far (at $\beta_N \sim 2.5$)

Issue for reaching high beta region = NTM suppression

JT-60U

JT-60U : Two scenarios for NTM suppression

NTM *avoidance* : Optimization of p(r) & q(r) • Hybrid Scenario regime (q₉₅~4.5) This q=1.5 at the center, q=2 at $\rho > \sim 0.7$ talk • Low-q regime (q₉₅~2.2) q=1.5 and 2 at $\rho > 0.7$ **NTM** *stabilization* : Active suppression with EC wave 😇 • Early ECCD ECCD **before** the NTM onset (or just after) Late ECCD

ECCD after the NTM saturation

Highlights in 2004 High β regime (β_N~3) 2nd harmonic X-mode EC wave New attempt in JT-60U

Capability of various heating profile & plasma shape control in JT-60U

Early injection with fundamental O-mode EC wave

NTM stabilization with early ECCD in $\beta_N \sim 3$ regime

1st O-mode

0

ρ

- High accuracy of ECCD location

Successful NTM stabilization in $\beta_N \sim 3$ regime

Detailed measurement of NTM structure

JT-60U ·

M-shaped amplitude profile

MSE

ECE

time

NTM: Magnetic island formation Signal intensity Rotating islands t=t₁ B F Ε B' t1 to t=t₀ A٠ Amplitude Β Β Ε F D Measurement point

Recent observations in JT-60U

- Change in J(r) during NTM growth/stabilization
- NTM structure in Te during stabilization

Localized change in current density has been observed during NTM growth/suppression

\tilde{T}_e profile suggests temperature increase INSIDE island

Reduced heat transport inside the island in LHD

FIG. 3. Comparison of temperature perturbation between experiment and simulation. The time evolutions of the measured (sold line) and the simulated (broken line) temperature perturbation at different radii in the same discharges as (a) Fig. 1 and (b) Fig. 2, respectively.

S. Inagaki et al., Phys. Rev. Lett. 92 (2004) 055002

Similar asymmetry was observed during EC mirror scan.

EC before the NTM onset suggests more efficient deposition inside island.

• Hypothesis leads to "One peak in T_e = deposition inside island"

→ 'ECH/ECCD before NTM onset is more efficient'

Further investigation required

NTM onset physics is the most challenging

JT-60U

5

CH

2

- 'NTM: Seed island formation by sawtooth and fishbone → growth'
- However, NTM can appear without clear MHD event

Summary

JT-60U —

Long-duration high- β_N discharge

- β_N =2.5 for ~10 τ_R , ~80 τ_E ; β_N =1.9 for ~15 τ_R , >100 τ_E
- No NTM in long timescale at $\beta_N < 2.5$ Low $\nu^* \& \rho^*$ regime

NTM suppression at $\beta_N \sim 3$ regime

- NTM avoidance at q₉₅~2.3: importance of p(r) & q(r)
- NTM stabilization by early ECCD: f_{BS}~f_{ECCD} for 2X & 1O; reduced EC power for stabilization
- Confinement improvement & stationary sustainment by NTM stabilization ($\beta_N \sim 2.9$, $H_{89PL} \sim 1.8$)

Measurement of NTM structure

- Decrease/ increase in J(r) during NTM growth/ suppression
- Asymmetry in δT_e during NTM stabilization Hypothesis: 'temperature increase inside island'