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Motivations

e Rotational stabilization of RWM may not be effective
for ITER.

e Active feedback control may not completely suppress
RWM due to wall-shielding.

e Fluid theory may not give accurate predictions.

e Consider mode-particle interaction.
Trapped particles can be very stabilizing.



Energy principle for RWM
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Terms in RWM stability condition
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e Instability drive (RHS) is maximized at
B~ (Bs + By)/2, and can be numerically small.

e Im(0Wy) is always stabilizing.
e Re(0Wk) can be stabilizing or destabilizing.



Five RWM stability /instability regions
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Sharp boundary model for RWM
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RWM eigenvalue dispersion relation derived

and kinetic effect included self-consistently



Sharp boundary model shows
trapped-ion kinetic effects

suppress RWM for ITER-like plasma

Kinetic effect is multiplied by ©
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Energy principle compared with eigenvalue
analysis for RWM sharp boundary model
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Calculate RWM growth rate
with ideal MHD code (PEST)

e Wall position and kinetic effect do not significantly
change mode eigenfunction inside plasma

e For given equilibrium, obtain eigenfunction at marginal
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Calculate oWg
1 5
oWk = §/d"°("3 ‘ €J_)*pK

e Resonance denominator: (wp) + wg — iVeff
o £ X B drift wg = (),pr — Wy,

e Set mode frequency w = 0

e Consider quasi-stationary regime {2, < Wy;

e Include ions, electrons and « particles



Symmetrized ITER
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Contribution to oWk is mainly from
inner plasma volume
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Precession drift frequency wp for
zero-pitch-angle thermal ions
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RWM growth rates of ITER with blanket for
different rotations using PEST

Parabolic rotation profile
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Remarks

e Trapped particles have significant influence on resistive
wall mode

e Pressure gradient significantly reduces wp at high 3

e Alpha particle contribution can be comparable to those
from ions and electrons in fusion reactors.
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Calculate oWg
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Pressure Profile
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