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Motivation

Feedback stabilization of resistive wall modes: Several recent papers (Bondeson
et al., Nucl. Fusion 2002; Chu, Chance, Glasser and Okabayashi, Nucl. Fusion 2003;
Chu et al., Phys. Plasmas this June) have concluded, based on linear toroidal sim-
ulations (MARS, DCON) that poloidal magnetic field sensors work better than radial
sensors, and that this is related to excitation of harmonics.



Approach

• Objective: to get more analytic understanding of the simulations

• Linear cylindrical equations

• Localization of sensor coils and feedback coils represented by excitation functions
f(θ), g(θ) and their Fourier coefficients fm, gm

• Ideal plasma - resistive wall modes: plasma response can be represented by
plasma stability index

κm ≡ −ψ′m(rw−)/ψm(rw)



Basic equations

ψ
′
m(1+) = −Amψm(1) + Bmψm(w). (1)

Plasma stability index κm: integrate γ = 0 eqs. to the resistive wall

ψ
′
m(1−) = −κmψm(1). (2)

The thin resistive wall boundary condition

γτψm(1) = ψ
′
m(1+)− ψ′m(1−), (3)

Combining,
(γτ + Am − κm)ψm(1) = Bmψm(w). (4)



Feedback with idealized coils

• Review of linear results of J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866
(2004)

• Idealized coils – sense a single Fourier harmonic and feedback with a single har-
monic

• Cylindrical geometry

• Proportional real gain based on radial sensors is effective and is equivalent to a
more closely fitting conducting wall

• Imaginary gain (π/2 phase shift) is equivalent to plasma rotation

• Imaginary gain with two resistive walls is equivalent to “fake rotating wall”



Feedback with non-idealized coils

Ss =
1

2π

∫ π

−π
ψ(1, θ)f(θ)dθ, (5)

Ss =
∑
m

ψm(1)f−m.

We take the linear proportional feedback circuit current: Ic = −GSs

ψ(w, θ) = Icg(θ) = −GSsg(θ), (6)

ψm(w) = −Ggm
∑
m1

ψm1
(1)f−m1

, (7)

(γτ + Am − κm)ψm(1) = −GBmgm
∑
m1

ψm1
(1)f−m1

. (8)



Radial sensors

Two-sideband coupling:

γτa−1 = λ−1a−1 −Gε (εa−1 + a0 + εa1) ,

γτa0 = λ0a0 −G (εa−1 + a0 + εa1) ,

γτa1 = λ1a1 −Gε (εa−1 + a0 + εa1) .

(9)

1-sideband special case (λ−1 = λ1):

γτa0 = λ0a0 −G (a0 + 2εa1) ,

γτa1 = λ1a1 −Gε (a0 + 2εa1) .
(10)
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Figure 1: γ as a function of G with radial sensors; ε = 0, 0.1, εcrit = 0.1581 (2)
and ε = 0.2. For ε ≥ εcrit no stabilization even for G → ∞. For internal poloidal
sensors, K = G/2, ε = 0.0, 0.1451, 0.2294 (2) and ε = 0.2902.



Internal poloidal sensors

Ss =
∑

mψ
′
m(1−)f−m and

ψm(w) = Kgm
∑
m1

ψ
′
m1

(1−)f−m1

(γτ + Am − κm)ψm(1) = −KBmgm
∑
m1

κm1
ψm1

(1)f−m1
.

Two-sideband model again:

γτa−1 = λ−1a−1 −Kεθ (εθκ−1a−1 + κ0a0 + εθκ1a1) ,

γτa0 = λ0a0 −K (εθκ−1a−1 + κ0a0 + εθκ1a1) ,

γτa1 = λ1a1 −Kεθ (εθκ−1a−1 + κ0a0 + εθκ1a1) .

Equivalent to radial sensors case with Gr−equiv = Kκ0 and εr−equiv = εθ
√
κ1/κ0.

Smaller effective coupling constant and larger effective gain.



External poloidal sensors

Two sideband model again leads to

γτ+1−κ−1
γτ−κ−1

b−1 = K̂ε (εb−1 + b0 + εb1) ,
γτ+1−κ0
γτ−κ0

b0 = K̂ (εb−1 + b0 + εb1) ,
γτ+1−κ1
γτ−κ1

b1 = K̂ε (εb−1 + b0 + εb1) .
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Figure 2: Growth rate as a function of the gain K̂ for external poloidal sensors and
ε = 0 (twice) and ε = 0.1, 0.1581 , 0.2. Results with external poloidal sensors are
about as effective as those with radial sensors.



Phase shift of coils - complex gain and reduction of coupling

Sensor coil phase shift f(θ) → f(θ − θ0): fm → e−imθ0fm. [Phase shift of the
feedback coil g(θ) → g(θ + θ0)] For radial sensors,

(γτ + Am − κm)ψm(1) = −GBmgm
∑
m1

ψm1
(1)e

−im1θ0f−m1
, (11)

Two-sideband coupling:

γτa−1 = λ−1a−1 −Geimθ0ε
(
εe−iθ0a−1 + a0 + εeiθ0a1

)
,

γτa0 = λ0a0 −Geimθ0
(
εe−iθ0a−1 + a0 + εeiθ0a1

)
,

γτa1 = λ1a1 −Geimθ0ε
(
εe−iθ0a−1 + a0 + εeiθ0a1

)
.

(12)

Two effects (if λ−1 = λ1): ε→ ε cos θ0 – less coupling.

Also G → Geimθ0 – complex gain - equivalent to wall rotation. (However, imagi-
nary gain without mode coupling cannot stabilize – the plasma inertia is neglected.)
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Figure 3: Growth rate γr and real frequency γi as functions of gain G for increasing
θ0 = θ1.
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Figure 4: Stability region plot vs θ1 and G.



Analytic model shows

• Sensor coil sensitivity to a broad spectrum of poloidal modes is equivalent to feed-
back coil excitation of a broad spectrum of modes.

• Broad spectrum (ε > εcrit) of either sensor or feedback coil leads to the impossi-
bility of control with radial sensors even with G→∞. Observed empirically in the
simulations.

• Internal poloidal sensors are better (observed in simulations) – equivalent to radial
sensors but with effective poloidal coupling smaller and effective gain larger, both
good. It still is possible that coupling can prevent stabilization, but larger actual
coupling εcrit is required. External poloidal sensors are comparable in effect to
radial sensors.

• Relative phase difference of sensor and feedback coils has two effects, both good:
weakening of coupling and complex gain (equivalent to rotation.)


