EUROPEAN FUSION DEVELOPMENT AGREEMENT

Advances in sawtooth control for NTM prevention in JET

S. Coda¹, L.-G. Eriksson², J. Graves¹, R. Koslowski³,
F. Nave⁴, P. Belo⁴, R.J. Buttery⁵, S. Cowley⁶,
P. de Vries^{5,7}, M.J. Mantsinen⁸, M.-L. Mayoral⁵,
A. Mück¹, O. Sauter¹, E. Westerhof⁷,
and JET-EFDA contributors

¹CRPP, EPFL, Association Euratom-Fédération Suisse, Lausanne, Switzerland
 ²Association Euratom-CEA, DRFC, Cadarache, France
 ³Association Euratom-FZ Jülich, Institut für Plasmaphysik, TEC, Jülich, Germany
 ⁴Associação Euratom-IST, Centro de Fusão Nuclear, Lisbon, Portugal
 ⁵Euratom-UKAEA Fusion Association, Culham Science Center, United Kingdom
 ⁶Department of Physics, Imperial College, London, United Kingdom
 ⁷Association Euratom-FOM, FOM-Rijnhuizen, TEC, Nieuwegein, The Netherlands
 ⁸Association Euratom-Tekes, Helsinki University of Technology, Finland

Outline

- NTM triggering by long sawteeth
- Sawtooth destabilization by ICCD
- Sawtooth destabilization by counter-NBI

Long sawteeth trigger (3,2) NTMs at low β_N

Avoidance strategy: destabilize sawteeth ⇒keep seed island small

EFDA (RPP)

Sawtooth control in JET

Fishbones are less of a concern

Sawtooth control in JET

(RPP

Discrete jump in β_N at long T_{st} ...

Sawtooth control in JET

...but β_N vs. T_{st} not really so simple

Sawtooth control in JET

(RPP

ICRH control of sawtooth period

- +90° at center: max fast-ion stabilization
- -90^o at q=1: max ICCD destabilization

EFDA

(RPP

Both effects increase with ICRH power

ICCD destabilization of fast-particle-stabilized sawteeth

L.-G. Eriksson et al., PRL 92, 235004 (2004)

(RPP

EFDA

Sawtooth control in JET

Control experiments: fast ions vs. ICCD

Control experiments: B-field scan

Sawtooth control in JET

Sawtooth destabilization by counter-NBI

Sawteeth shorter with counter- than co-NBI

Rotation scan in counter-NBI

Sawtooth period is minimum at P~4 MW

(RPP)

Sawtooth control in JET

Minimum T_{st} found at finite rotation

Explanation?

- NBCD unlikely
- Fast ions unlikely
- Promising candidate: internal kink stabilization by sheared rotation

Shape also affects sawteeth

EFDA (RPP

Sawtooth control in JET

Conclusions

- NTMs are expected to be excited in ITER by long sawteeth stabilized by α -particles
- ICCD at q=1 has been proven to be an effective means of shortening sawteeth, even with large fast-ion pressure, thus preventing NTMs
- Additional sawtooth destabilization tools demonstrated on JET: rotation in counter-NBI and higher elongation

Plans for coming campaigns

- Demonstrate NTM prevention scenario with combined sawtooth stabilization/destabilization scheme
 - Attempt feedback on ICRH frequency for scenario optimization
 - Use new ICRH antenna for better coupling during ELMs
- Further characterize NTM triggering in a wider range of plasma parameters

