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Outline:

1) Equations for wall currents & eigenvalue analysis

2) Examine simplest problem a rectangular plate

3) Examine standard DIII-D vacuum vessel

4) Field penetrating a wall, compare models with many
vs. 1 time constant.

5) Conclusions & recommendations
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V-B-= 0, B=VxA
Equations for wall times v {j B _li
~ VxB=u,J
Many people stop at £V2l§=—@ E=nJ, V-J=0
o ot

Write equations in terms of currents,
Use the standard definitions & assumption

f W (nj +A+ qu)dv =— fvT/ : Aexwmaldv

volume volume

JFH= Y LOWw,(F)
all
elements

Where the w, are shape functions (closed loops of current)
This gives the standard set of familiar circuit equations



Circuit equations are a set of simultaneous o.d.e.

[L]NxN{j}le + [R]NxN{I}le - {V}le

With eigenvalues ( time constants T,) & eigenvectors{&, }
We may express any answer in terms of the eigenvectors

(10}, = Dehei0=[hy  Ed] o),
{1} =[¥Hc®}, {c®}=[¥] {10}

We can find the most important modes by looking at the
largest values of the vector {c(t)}. We may reconstruct the
result with a subset of modes



We examine the modes & time constants of a thin plate
1.8 x 1.5 x 0.01 [m] with resistivity = 130.e-08 [ohm m]
In this model we have 270 equations / modes

Stream function graphics & Eddy current plots
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The slowest mode (shown above) is #270
Time constant = t,,,=1.521e-3 s



The following illustrates the slowest modes (in order)

il

Treo=1.082¢-3 s
mode #269

mode #268
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The following illustrates the slowest modes (in order)

8.185¢e-4 s 7.904¢e-4 s 6.765¢e-4 s
mode #267 mode #266 mode #265

6.689¢-4 6.227¢e-4
mode #264 mode #263 mode #262




Examine fast time scale current response in plate
produced by current step in square (1x1 [m]) coil.

Coil 1s 0.1 [m] from plate

| e e et | | | | T— | |

] e S S W W I N TS . e e e

a4 4 € € € € 4§ & ¢ O,

N



best 2 mode approximation best 4 modes

bl

a
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best 6 modes best 8 mode approximation



Most important ( highest ¢, or ‘weight’) shown below
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mode #270 mode #258 mode #266
wt=-0.852¢-2 wt = 0.2058e-2 wt = 0.130e-2

0.152e-2 s 0.498¢-3 s 0.790e-3 s

' mode #232 ‘mode #265
wt =0.122e-2 wt = 0.978e-3 wt = 0.765¢e-3

0.417e-3 s 0.298e-3 s 0.676e-3 s



Examine steady state (resistive response) in same plate

Vel ﬂ'”““’-"h‘hm N




normalized mode weight
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Examine fast time scale response in standard DIII-D model
(thick ‘belly band’, remainder thin, constant resistivity)

Using B, from A.Turnbull (GATO) analysis of shot #92544
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1281 equations/modes




2 best modes 4 best modes

6 best modes 8 best modes




Most important modes ( greatest weights ) follow:

moﬂe # 112528 1 mode #1260
Wt5§5-0.20 C- wt = 0.899¢-2
0.555e-2 s 0.3068e-2 s

greatest contribution



Most important modes ( greatest weight ) follow:

mode #1231 mode #1277
wt = -0.669¢-2 wt = 0.600e-2

0.2043e-2 s 0.555e-2 s



Most important modes ( greatest weight ) follow:

mode#1255 mode#1233
wt =0.573e-2 wt =-0.451e-2
0.282e-2 s 0.207e-2 s



Examine steady state (resistive) response in standard DIII-D model
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hormalized mode weight
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Many modes

S _
P ooe .
BE T  x
b
. }{ 'Il}{. *
® “Eﬁ
(NER" 5 SRR IR CARIA- NERRARRARS CRRRARNEAR] i
T -
"II"-l }{3 ]
L BRES
.. i
.
I
A %

& ind norm mag(mc)
»  Resnorm mag(mc)

0

0.002  0.004

time constant [s]
(eigenvalue)

0.006

0.008

mades

are important !!



Examine magnetic field penetrating a wall via
frequency response of a driving coil, distributed
wall model, sensors measure net axial field

late 130.e-08 ohm m
X 2 x 0.009525 thick

Apply voltage to
/ this coil, vary frequency
coil
R=0.5m
sensor #8
0.01 x 0.01 sensor #5
0.01 x 0.01
[ [
L LI
z=0.5
z=-0.5
- Frequency response

Solves:
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gauss/famp at sensors

Sensor well shielded

frequency response calculation by distributed wall !

distributed wall model(many modes)
fields & currents

107 1 0
-45
107 -90
o
L
| Lol
__ : -135
—0— #5 gauss/amp ] E
_ R !
—m— #8 gaussfamp 1 i
10 -180 <
—a— phase driver [deq] i
[| —e— phase max plate [deg] =
-225
—e— 5en #5 phase [deg) i Skin depth
=.009525 [m]
5 —o— sen #8 phase [deg) ~ 3.6k hz
.ID - 1 r 5 s ......i3 ‘;E?G
10 10 10 10 10

driving frequency [hz] 514 e PR boae



Examine magnetic field penetrating a wall via
frequency response of a driving coil, the simplest wall
model (a passive coil), sensors measure net axial field

This coil responds

passively Apply driving voltage
\ to this coil, vary frequency

coll
R=0.5m O R=0.5m
sensor #9
0.01 x 0.01 sensor #5
0.01 x 0.01
] M
L L]
z=0.5
z=-0.5

z=-0.1 z=0

Frequency response calc solves [L](iw) +[R][{1,}e™ ={V,}e™



gauss/amp at sensors

frequency response calculations
wall modeled by 1 time constant coil

fields and currents
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—e— phase driver deg
—e— phase passive coil deg

1 e phase s#5 deg

—O— phase s#9 deg
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Shielding by passive coil
greatly different !
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gauss/amp at sensor

comparison
field penetration
passive coil vs. plate

102 |

Distributed
wall model
shields much
more field at
interesting
frequencies !

—5— #5 gauss/amp

-4 —®— #9 gauss/amp 5 ‘
10™ —e—+#59/aplate |- e o
i —e— #8 g/a plate f

102

10° 10!

103 10°

driving frequency [hz]



Conclusions & Recommendations

1) All walls have many time constants

2) Current distributions may be described by sum of
weighted eigenvectors, we may 1dentity mode with the
greatest contribution to the total answer

3) In toroidal geometry we never see an eigenvector with
a helical pattern and we need many modes to well
represent a helical pattern typical of a plasma mode.

4) Penetration of a magnetic field through a wall is not
well modeled with a single wall time constant.

When using a single wall time constant proceed with caution.

Can we specify the best way to make this approximation ?



