Magnetic Island Rotation

K. C. Shaing

University of Wisconsin Madison, WI 53706

APS 2003

<u>Motivation</u>

Island rotation frequency ω is required to complete the description of a magnetic island.

Island stability depends on the island rotation frequency through the polarization term.

Plasma flow also depends on ω . At island O-point, plasmas flow at the same rate as islands.

Island Rotation Frequency

Island rotation frequency is determined from the *sine* component of Ampere's law:

$$\oint d\xi \int_{-\infty}^{\infty} dx J_{\parallel} \sin\xi = c \,\tilde{\psi} \Delta_{s}' / (4\pi R).$$

Parallel current density $J_{||}$ can be determined from $\nabla J = 0$.

What is (are) the physical mechanism(s) that can drive a perpendicular current density J_{\perp} which can give rise to a J_{\parallel} with the right parity to contribute to the integral?

Broken Toroidal Symmetry in |B|

In the vicinity of a magnetic island, the toroidal symmetry in |B| is broken:

B on the island surface:

$B/B_0 = 1 - \left[\frac{r_s}{R} \pm \frac{r_w}{R} \left(\overline{\Psi} + \cos\xi\right)^{1/2}\right] \cos\theta$

- $\overline{\Psi}$: Normalized helical flux function,
- **ξ**: m (θ ζ / q_s), helical angle,
- *m* : Poloidal mode number,
- $\boldsymbol{\xi}$: Toroidal angle,
- $r_{\rm w}$: A measure of the width of the island.

Symmetry Breaking Induced Viscosity

Broken toroidal symmetry leads to an enhanced toroidal viscous force.

This toroidal viscous force induces a radial current and thus a parallel current density that has the right parity to contribute to the integral.

The flux surface averaged toroidal momentum balance equation, which includes the enhanced toroidal viscosity, determines a radial electric field.

The conventional parallel momentum balance equation determines a poloidal flow, or a parallel flow.

Thus, plasma flows are completely determined by introducing symmetrybreaking viscosity in the momentum equation.

5

Flux-Force Relation

Radial current is

$$J_{\perp} \nabla \Psi = \sum_{j} e_{j} \int dv f_{j} v_{B} \nabla \Psi$$
$$= \sum_{j} e_{j} \Gamma_{j},$$

 $\mathbf{v}_{\rm B}$: ∇B and curvature drifts.

Decompose radial flux Γ_j into:

Non-axisymmetric flux:

 $(\mathbf{\Gamma} \ \nabla \Psi)_{\mathrm{na}} = -\int d\mathbf{v} f \ (\mathbf{v}_{\parallel}/B) \ \nabla \ [(\ \mathbf{v}_{\parallel}B^2 \mathbf{B}_{\mathrm{t}})/\Omega)],$

Banana-Plateau flux:

$$(\Gamma \nabla \Psi)_{bp} = \int d\mathbf{v} f (\mathbf{v}_{\parallel}/B) \nabla [(\mathbf{v}_{\parallel}B^2/\Omega) \times (\langle I_c \rangle/\langle B^2 \rangle)B],$$

Pfirsch-Schluter flux:

$$(\mathbf{\Gamma} \ \nabla \Psi)_{\rm ps} = \int d\mathbf{v} f \ (\mathbf{v}_{\parallel}/B) \ \nabla \ [(\mathbf{v}_{\parallel}B^2/\Omega) \times (I_{\rm c}/B^2 - \langle I_{\rm c} \rangle/\langle B^2 \rangle)B].$$

where $I_{c} = B_{t} B_{t}$, $\boldsymbol{B}_{t} = \nabla \Psi \times \nabla \theta / (B \nabla \theta).$

Banana-plateau flux is ambipolar after poloidal flow is relaxed. Pfirsch-Schluter flux is intrinsically ambipolar. Both of these fluxes do not contribute to the radial current.

Only the non-axisymmetric flux

 $(\mathbf{\Gamma} \ \nabla \Psi)_{\mathrm{na}} = -\int d\mathbf{v} f \ (\mathbf{v}_{\parallel}/B) \ \nabla \ [(\mathbf{v}_{\parallel}B^2 \mathbf{B}_{\mathrm{t}})/\Omega)],$

contributes to the radial current. Note this flux vanishes if the system is toroidally symmetric.

Perturbed Particle Distribution Function

To calculate the radial current, linear drift kinetic equation is solved for the perturbed particle distribution function.

For example in the 1/v regime, *i.e.*, banana particles are collisionless, the perturbed perpendicular pressure is

 $p_{\text{LIV}} = -(I/M\Omega)(n_0 \nabla \theta)(q_S'W_{\psi}/q_S)(\delta_{w}/2) \times$

 $(msin\xi)(4/M^{3/2})\Delta^{3/2}I_{I_{I_{v}}}\int_{0}^{\infty}dE \ (E^{5/2}/\nu) f_{M} \times [p'/p + e\mathcal{F}'/T \ + (x^{2} - 5/2) \ T'/T],$

where $\Delta \approx \varepsilon$, $\delta_{\rm w} = r_W / R$, and $E = M {\rm v}^2 / 2$.

Toroidal Viscosity

Using the perturbed pressure, the flux surface averaged toroidal viscosity is

 $\Gamma_{j} = C_{1} [N_{j} v_{tj}^{4} / (2^{7/2} \pi^{3/2} v_{j})] (IB \ \nabla \theta / \Omega_{j}B)^{2} m^{2}$ $\delta_{w}^{2} \varepsilon^{3/2} [(dq/dr) r_{W} / q_{S}]^{2} [F(\overline{\Psi}) (1 + \overline{\Psi})^{1/2} / K(\kappa_{f}]$ $[\lambda_{1j} (p_{j}' / p_{j} + e_{j} \mathcal{F}' / T_{j}) + \lambda_{2j} T_{j}' / T_{j}].$

Because ion viscosity is larger than electron viscosity in this regime, $\Gamma_i \approx$ 0, to maintain ambipolarity. This equation determines a radial electric field $e_i \mathcal{F}'/T_i$:

$$e_{i}\mathcal{F}'/T_{i} = -(p_{i}'/p_{i}) - 2.37 T_{i}'/T_{i}.$$

Radial Electric Field

Because parallel electric field $E_{||} \approx 0$, the electrostatic potential Φ has the form

$$\Phi = -(\omega q/mc) (\psi - \psi_{s}) + \mathcal{F}(\Psi).$$

Assuming the electric field away from the island is not perturbed, $\mathcal{F}(\Psi)$ must have the form

$$\mathcal{F}(\Psi) = (q/mc)(\omega - \omega_{\rm E0}) \mathcal{H}(\Psi),$$

where $\omega_{E_0} = -mc\Phi_0'/q$, and $\mathcal{H}(\Psi) \rightarrow (\psi - \psi_s)$ far away from the island.

Profile Functions

Both the profile function $\mathcal{H}(\Psi)$ and the island rotation frequency ω need to be determined.

For simplicity, assume

$$p' = p_0' \partial \mathcal{H} / \partial \Psi, T' = T_0' \partial \mathcal{H} / \partial \Psi,$$

and

$$\mathcal{H}(\Psi) = \pm W_{\psi} \left[(\overline{\Psi})^{1/2} - 1 \right] \text{ for } \overline{\Psi} > 1$$

=0, inside the separatrix.

Because ω is not yet determined, ambipolarity condition is not yet satisfied for a given set of profile functions.

Parallel Current Density

Using $\nabla J = 0$, parallel current density is

 $B \ \nabla(J_{\parallel}/B) \approx$

 $-cg^{-1/2} \partial [g^{1/2}p_{\perp t\theta}(B \times \nabla \xi \nabla \Psi)(\partial B/\partial \xi)/B^{3}]/\partial \Psi + \langle c g^{-1/2} \partial [g^{1/2}p_{\perp t\theta}(B \times \nabla \xi \nabla \Psi)(\partial B/\partial \xi)/B^{3}]/\partial \Psi \rangle.$

This parallel current density has the right parity to contribute to the integral.

Using this J_{\parallel} , an equation for the island rotation frequency can be obtained.

Island Rotation Frequency

Island rotation can be solved from

$$-(2\pi)^{-5/2} (v_{ti}/Rq)^2 (r_W/\nu) \varepsilon^{3/2} m^2 (\delta_w^2/4)$$

$$I_{1/\nu} C_{1/\nu} \{ \lambda_{T1i} [\omega_{*pi} + (\omega - \omega_{E0})] + \lambda_{T2i} \omega_{*Ti} \}$$

$$= n \varepsilon^2 (V_{AP}^2/4\pi) (S^2/4) (r_W/r_S)^4 \Delta_s',$$

in the 1/v regime.

$$C_{1/v} \approx \pi, \omega_{*pi} = (mcT/eq)(p_{0i}'/p_i),$$

 $\omega_{*Ti} = (mcT/e_jq)(T_{0i}'/T_i),$
 $V_{AP} = B_p / (4\pi NM)^{1/2},$
 n : toroidal mode number, and
 $S = r_S (dq/dr)/q.$

 ω in other regimes, such as the v regime, and the plateau-Pfirsch-schluter regime is also calculated. The main difference is in the coefficients λs , and the collision frequency dependence on the left side of the equation. If island is not interacting with a conducting wall or helical coils, island rotation frequency is determined from

 $-(2\pi)^{-5/2} (v_{ti}/Rq)^2 (r_W/\nu) \varepsilon^{3/2} m^2 (\delta_w^2/4)$ $I_{1/\nu} C_{1/\nu} \{\lambda_{T1i} [\omega_{*pi} + (\omega - \omega_{E0})] + \lambda_{T2i} \omega_{*Ti} \} = 0,$

in the 1/v regime.

And

$$(\omega - \omega_{E0}) = -\omega_{*pi} - (\lambda_{T2i} / \lambda_{T1i})\omega_{*Ti},$$

in the 1//v regime.

In the plateau-Pfirsch-Schluter regime, ($\omega - \omega_{E0}$) has the same form as that in the 1/v regime except that it has a different ratio of ($\lambda_{T2i}/\lambda_{T1i}$).

In the collisionless v regime:

$$(\omega - \omega_{E0}) = -\omega_{*pe} - (\lambda_{T2e} / \lambda_{T1e})\omega_{*Te}.$$

<u>Schematic Collision Frequency Dependence</u> <u>for the Toroidal Viscous Force</u>

Electrons:	
Ions: —	

When the electron viscosity dominates in the low collisionality regime, island rotation frequency reverses the direction.

Parallel Flow

From parallel momentum balance equation:

 $V_{\parallel}/B = - [IcT_{\rm i}/(e_{\rm i}\langle B^2 \rangle_{\theta})] \{-1.17(dT_{\rm i}/d\Psi)/T_{\rm i}\}$

+ $[(dp_i/d\Psi)/p_i + e_i \mathcal{F}'/T_i]$ $d\Psi/d\psi$ +

 $(Ic/\langle B^2 \rangle_{\theta})(\omega q/mc).$

in the banana regime.

In the plateau regime, and the Pfirsch-Schluter regime, the number '-1.17' is replaced by '1/2' and '1.69' respectively.

At the island O-point, plasma gradients vanish, thus, plasmas rotate at the same rate as the island. One can use this property to measure the island rotation frequency.

Conclusions

At the vicinity of a magnetic island, the toroidal symmetry of $|\mathbf{B}|$ is broken.

This broken symmetry leads to an enhanced toroidal viscous force.

Flux surface averaged toroidal momentum balance equation determines a radial electric field from the toroidal viscosity.

A parallel current density induced by a toroidal viscosity driven radial current has the right parity to contribute to the integral in the *sine* component of the Ampere's law.

Island rotation frequency in the collisional and collisionless regimes is calculated. In the ion viscosity dominant regimes, island rotates at a rate:

$$(\omega - \omega_{E0}) = -\omega_{*pi} - (\lambda_{T2i}/\lambda_{T1i})\omega_{*Ti}$$

In the electron viscosity dominant regime, island rotation frequency reverses direction.

At the island O-point, plasmas rotate at the same rate as the island.