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KEY RESULT

l  Measured interaction between plasma and externally applied fields in quantitative 
     agreement with predictions of semi-empirical single-mode MHD model

KEY PHYSICS

l  Validation of single rigid mode approach, the basis of several RWM feedback models

l  RWM rotation w.r.t. the wall is NOT required for stabilization by plasma rotation

P Most physics based RWM models DO NOT agree with this result
Resistive MHD: 

Finn, Phys. Plasmas  (1995);  Boozer, Phys. Plasmas (1995);  
Gimblett and Hastie, Phys. Plasmas (2000) 

Ideal MHD with dissipation: 
Bondeson and Ward, Phys. Rev. Lett. (1994);  Betti and Freidberg, Phys. Rev. Lett. (1995); 
Fitzpatrick and A. Aydemir, Nucl. Fusion  (1996);  Fitzpatrick, Phys. Plasmas (2002)
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INSTABILITIES OBSERVED AT bbbbN ABOVE NO-WALL LIMIT HAVE
CHARACTERISTICS OF PREDICTED RESISTIVE WALL MODE

l Theory l Experiment ttttw  (n=1) ~ 4 ms

—
  
g t~ w

1- — gg–1 ~ 1 to 8 ms in good
agreement with 

—
  
w t W~ w

1
plasma

- << — Mode nearly stationary from its
onset while plasma rotates
H f    ~ 0 to 60 Hz in good agree-

ment with 1/2ptw  (~ 40 Hz)

— Mode structure similar to ideal
external kink

— Radial mode structure agrees
with ideal MHD prediction

— Stable for Wplasma > Wcrit — Wcrit clearly observed

tw

H ~ 5 kHz in good agreement 

A

Wcrit
with ~2% (1/2pt ) at q=2

2p/

for bN > bN
no-wall  

g >> tw
-1

   for bN > bN
ideal-wall  — g-1~ 200 ms and bN

ideal-wall~ 2xbN
no-wall 

in good agreement with calculations
—
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P Analyzed measurements of the RWM response to external resonant fields vs. b, at b > bnowall  
P Generalized an ideal MHD model (Garofalo-Jensen-Strait, Phys. Plasmas, 2002) to include the 
     effects of plasma rotation and dissipation
     r  Slab-geometry formulation of general-geometry theory by Chu et al. (Nucl. Fusion, 2003)
     r  Describe the effects of error fields on a high-b plasma
     r  Describe the RWM dispersion relation in the parameter range explored (special case of no
          external fields)
P Found that the new model can explain quantitatively the experimental observations 
     r  Need a physics mechanismm for RWM stabilization without (much) dissipation
     r  RWM stabilization and plasma rotation braking must be two aspects of the same physics 
          mechanism
P Hu and Betti, "Ion kinetic effects on resistive wall modes", APS '03

DIII-D MEASUREMENTS OF THE ROTATIONALLY STABILIZED RWM
HIGHLIGHT NEED FOR NEW PHYSICS MODEL
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RESISTIVE WALL MODE DRIVEN BY EXTERNAL FIELD DOES NOT ROTATE
(CONSTANT TOROIDAL PHASE) BUT REMAINS STABLE
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KNOWING THE PLASMA RESPONSE FUNCTION L(bN) -> CAN CALCULATE 
bN-DEPENDENCE OF RWM CHARACTERISTICS NOT DIRECTLY MEASURABLE

Experimental measurements (x) and model predictions (+) 

l	 Better overall agreement is obtained by allowing the input parameters (growth rates and 
	 phase shifts) to have some deviation from the measured values

RWM
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Fy = 1
2m0

bx ( 0 )
2

kt + kp
2/kt

l im 2 pR 2 pr

dFy
ds

= 1
2 m0

Re — ¥ A Âˆ y ( ) — ¥ A Âˆ x ( ){ }

bx(0) = — ¥ A [ ]x(0)

THE RESONANT FIELD AMPLITUDE OBTAINED FOR GIVEN FORCE FROM MODEL'S lim
IS CONSISTENT WITH EXPERIMENTAL MEASUREMENTS AND TRANSPORT ANALYSIS

l	 The resonant RWM exerts a braking force Fy on the plasma flowing in the y-direction.
	 The time average force per unit area in the y-direction is given by:

l	 The force exerted on the flowing plasma by a finite radial field at the wall, 
	  is given by:

l	 Since the radial field measured in the experiment is a plasma response only:

l	 Therefore the magnitude of the RWM that would exert a force  Fy ~1.4 N is:

bx (0) = bP, x (0) RFA + 1
RFA

=

2m0 kt +
kp

2

kt

Ê 

Ë 
Á 

ˆ 

¯ 
˜ Fy

lim 2pR2pr
~ 1.3±0.4 Gauss

RFA + 1
RFAbP, x (0)
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DIII-D MEASUREMENTS INCONSISTENT WITH FIZPATRICK'S
LOW-DISSIPATION RWM REGIME
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Fitzpatrick, Phys. Plasmas, 2002:  [...]
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FREQUENCY DEPENDENCE OF RESONANT FIELD AMPLIFICATION
PREDICTED BY SIMPLE RWM MODEL

=J E e iw  tJ E0l	 External current: 
l	 Plasma response (resonant field amplification):  

l	 Stability parameters (L) from square pulse analysis -> Resonance at ƒ ³  10 Hz
l	 Recent experimental results in excellent agreement with model predictions 
	 (Reimerdes, et al., EPS '03, PRL to be submitted)

RFA =
A(0) - AV(0)

AV(0)
=

k - L

k + L + 2kiwEtW
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SUMMARY

l  Previous common understanding of the rotational stabilization of the RWM appears 
      inconsistent with the recent experimental evidence from DIII-D

l   Measurements of plasma response to external field pulses at bN > bN
no wall

  yield complete 
      characterization of the RWM dispersion relation

l   Beta dependence and frequency dependence of plasma response to external fields correctly 
      predicted by simple, semi-empirical, one-mode RWM model
      r   Model estimate of the RWM interaction with plasma rotation consistent with transport 
            calculations

l   The RWM rotation with respect to the wall is not needed for mode stabilization by plasma 
      rotation

P Most physics based RWM models DO NOT agree with this result
P Model by Hu and Betti shows an example of an effective mechanism for RWM stabilization 
    by plasma rotation, without dissipation




