Stabilization of the Resistive Wall Mode by Magnetic Feedback and Plasma Rotation

Y.Q. Liu¹, A. Bondeson¹, D. Gregoratto¹, C.M. Fransson², B. Lennartson², C. Breitholtz², Y. Gribov³ with contributions from M.S. Chu⁴, R. La Haye⁴, A. Garofalo⁵, T. Hender⁶, M. Gryaznevich⁶, A. Polevoi³, V.D. Pustovitov⁷

¹Department of Electromagnetics, EURATOM-VR/Fusion Association

² Department of Signals and Systems

Chalmers University of Technology, Gothenburg, Sweden

³Physics Unit, ITER Naka Joint Work Site, Naka, Ibaraki, Japan

⁴General Atomics, San Diego, USA

⁵Columbia University, New York, USA

⁶UKAEA/Euratom Fusion Association, Culham, UK

⁷Russian Research Centre Kurchatov Institute, Moscow, Russia

Workshop on Active Control of MHD Stability: Extension to the Burning Plasma Regime University of Texas-Austin, Austin, Texas, USA, November 3-5, 2003

Outline

- Feedback
- Rotation
- Feedback + Rotation
- Resonant Field Amplification (RFA)
- Conclusions

RWM control diagram

- Input signal: current I_f or voltage V_f
- Output signal: flux Ψ_s or voltage V_s
- Plasma dynamics: $P_1(s)$ frequency dependent transfer function
- $\lambda \equiv$ fraction of poloidal width subtended by active coil

• Current control: $I_f = -K\Psi_s/M_{sf}$

Frequency response of the plasma-wall system to feedback currents is determined by a non-dimensional transfer function $P_1(s)$. Characteristic equation of closed loop $1 + K(s)P_1(s) = 0$.

• Voltage control: $V_f = -KV_s$

Introduce non-dimensional transfer function $P_2(s)$ for the (normalized) loaded self-inductance of the active coils.

Characteristic equation of closed loop $1 + K(s)P_1(s)/[P_2(s) + 1/s\tau_f]$, where $\tau_f = L_f/R$.

• Plasma response model $\{P_1(s), P_2(s)\}$ can be constructed analytically for cylindrical equilibria, and computationally for 2D toroidal hight- β equilibria using MARS-F code.

Representation $\vec{b} = \nabla \psi \times \hat{z}$ Stability index $r_w \psi'_m(r_w^-)/\psi_m(r_w) = -(2\Gamma_m + |m|)$ Jump at wall $r_w \Delta'_w = r_w \psi'_m(r_w)|_-^+/\psi_m(r_w) = 2s\tau_w$ W-o feedback $\gamma_m \tau_w = \Gamma_m$

Result

Single mode transfer functionPRadial or poloidal sensor? $\{I, I\}$

$$b_{m}^{\text{sensor}} = M_{m}(s)b_{m}^{\text{coil}} \quad M_{m}(s) = \frac{|m|(r_{f}/r_{w})^{1-|m|}}{s\tau_{w} - \Gamma_{m}}$$
$$P(s) = M_{m}(s), \quad b_{m}^{\text{sensor}} = P(s)b_{m}^{\text{coil}}$$
$$\{P_{m}^{(r)}(s), P_{m}^{(\theta)}(s)\} = \{1, 2\Gamma_{m} + |m|\}M_{m}(s)$$

Poloidal sensors superior when $\Gamma \gg 1$, near ideal-wall limit, where $b_r(r_w) = 0$.

- Characteristic equation: $1 + K(s)P(s) = 0, P = R/(s\tau_w - \Gamma_m)$
- Nyquist curve: K(jω)P(jω), -∞ < ω < ∞ must encircle -1 in counterclockwise direction.
- Single harmonic is easily controlled by proportional current control

$$1 + K \frac{R}{s\tau_w - \Gamma_m} = 0 \quad \Rightarrow \quad s\tau_w = \Gamma_m - KR$$

Feedback works well under single-mode conditions.

Decompose antenna current in Fourier components \Rightarrow

Feedback

Transfer function $P^{\{r,p\}}(s) \equiv b_{\{r,p\}sens}/b_{sf} = \sum_{m} \{1, (2\Gamma_m + |m|)/m\} M_m(s) c_m$

where
$$M_m(s) = \frac{|m|(r_w/r_f)^{|m|-1}}{s\tau_w - \Gamma_m}$$
, $c_m \propto$ m-component of active current

Poles in M_m correspond to growth-rates for RWM without feedback.

P(s) = rational function. Well approximated by low order Padé approximation, P(s) = N(s)/D(s) [N(s) quadratic, D(s) cubic].

Theory vs. MARS-F computations

- MARS-F gives similar transfer functions for (almost) equivalent cylindrical equilibrium (R/a = 10)
- Toroidal calculations $(R/a \simeq 3)$ give more optimistic results than cylindrical theory
- Reason: ballooning toroidal mode structure

• Poloidal sensors are superior to radial sensors

- Reasons:
 - Radial sensors on the wall cannot detect a mode near ideal-wall limit $\vec{b} \cdot \hat{n}|_{\text{wall}} = 0$
 - Poloidal sensors strongly decouple with feedback currents \Rightarrow detect more perturbations from plasma
 - Residual cancellation for stable modes \Rightarrow poloidal sensors "see" mostly the unstable mode

Performance specifications

- Sensitivity S = 1/(1 + KP)
- Stability margin: $J_S = ||S||_{\infty} = \max_{\omega} |S(j\omega)| < 2.0$ keeps system away from marginal stability.
- Optimize controller to minimize control activity, e.g, max voltage in initial value problem

PID controller for voltage control

$$K_{PID}(s) = \left(K_p + \frac{K_I}{s}\right) \frac{1 + T_d s}{1 + T_d s/\xi}$$

Control can be made robust w.r.t. plasma pressure, total current, rotation.

- EFDA report No. 02-691
- Y.Q. Liu, A. Bondeson, Y. Gribov, A. Polevoi, "Stabilization of resistive wall modes in ITER by active feedback and toroidal rotation", to appear in Nucl. Fusion

• Both walls and blanket are modeled as continuous, 2D thin shells

• $\tau_w = 0.188$ s for double wall, $\tau_b = 9$ ms for blanket

RWM control for ITER plasmas

- Growth rates of both ideal kink and RWM show $\beta_N^{ideal-wall} \simeq 3.65$ without blanket
- Beta limits agree well with KINX and PEST-2
- RWM growth rates agree well with KINX
- Blanket has minor modification to RWM growth rates, as long as β_N is not close to ideal wall limit

RWM control for ITER plasmas

- With poloidal sensors inside the first wall + proportional control only, RWM can be stabilized up to $C_{\beta} \equiv (\beta_N \beta_N^{no-wall})/(\beta_N^{ideal-wall} \beta_N^{no-wall}) = 60\%$
- Adding D-action can stabilize the mode for $C_{eta} \lesssim 70\%$
- Feedback with radial sensors can not stabilize RWM for $C_{\beta} = 47\%$, with any (stable) PID controller
- Blanket modifies only slightly transfer functions

RWM control for ITER plasmas

- Controller optimization made for internal poloidal sensors
- With good performance (solid line), RWM can be stabilized up to $C_{\beta} = 50\%$ if peak voltage limit is 40V/turn, and up to $C_{\beta} = 60\%$ if voltage limit is 300V/turn
- With looser performance (dash-dotted line), RWM can be stabilized up to $C_{\beta} = 60\%$ if voltage limit is 40V/turn, and up to $C_{\beta} = 80\%$ if voltage limit is 300V/turn

MIMO/MISO control

- MIMO (Multiple Input Multiple Output): each pair of active and sensor coils is connected by an independent controller
- MISO (Multiple Input Single Output): all active coils are connected to the same sensor coil by independent controllers
- $\Lambda \equiv$ poloidal distance between centers of two neighboring coils
 - $\Lambda > \lambda \rightarrow$ gap between coils; $\Lambda < \lambda \rightarrow$ coils overlap; $\Lambda = 0 \rightarrow$ Single Input Single Output

MIMO control - cylindrical theory

- With poloidal sensors, single coil ($\Lambda = 0$) works better than multiple coils ($\Lambda > 0$) in terms of control activity.
- With radial sensors, MIMO system improves feedback control. Good results are obtained when three active coils are well separated ($\Lambda > \lambda$) \Longrightarrow reduced coil coupling.

	sensor	ctrl.	J_S	J_T	J_u
SISO	pol.	single	1.00	1.73	0.98
MIMO	pol.	identic.	2.11	2.50	1.32
MIMO	pol.	diff.	1.36	1.92	0.69
SISO	rad.	single	1.37	1.68	3.65
MIMO	rad.	identic.	1.46	1.59	24.7
MIMO	rad.	diff.	1.87	2.10	3.48

- For both types of sensors, MIMO with identical controllers gives worse results than SISO, in terms of control activity $J_u = ||KS||_{\infty}$
- MIMO with different controllers (in diagonal controller matrix) gives comparable results to SISO
- Results for a JET shaped advanced equilibrium, more study with DIII-D plasmas expected
- MARS-F is now used at General Atomics (M.S. Chu et al. APS DPP03 invited talk)

Rotation Cylindrical theory - continuum damping

Theory for cylindrical tokamak: $\vec{b} = \nabla \Psi \times \hat{z}, \ \Psi = \psi_m(r) \exp(jm\theta - jn\phi)$

• The stability of the RWM is determined by

$$r_{w}\Delta_{w}' \equiv r_{w}\frac{\Psi_{m}'(r_{w}^{+}) - \Psi_{m}'(r_{w}^{-})}{\Psi_{m}(r_{w})} = 2\gamma\tau_{w}$$

- RWM growth rate $\gamma = O(1/\tau_w) \ll \omega_0$ = plasma rotation frequency, so $\gamma \simeq 0$ is a good approximation inside the plasma.
- Resonances at $\omega_0 = \pm k_{||} v_A = \pm \omega_A(x)$ near rational surfaces.
- "Resonance layer problem" has external asymptotes for $|x| \gg |\omega_0/\omega'_A|$

$$\Psi(x) = c_1 \left(-j\pi |x| + \frac{2\omega_0}{|\omega'_A|} \right) + c_2 x$$

• Internal delta-prime: $\Delta'_{\rm int} = -j\pi |\omega'_A| / \omega_0$ (independent of γ)

- $\psi_0(r) =$ no-wall solution and $\psi_{\infty}(r) =$ ideal-wall solution.
- Matching at wall gives $\psi(r) = \psi_0(r) + \gamma \tau_w \psi_\infty(r)$
- Set $\psi_{\{0,\infty\}} = \psi_{\{0,\infty\}}(r_s)$ and $\delta_{\{0,\infty\}} = \psi'_{\{0,\infty\}}(r_s^+) - \psi'_{\{0,\infty\}}(r_s^-)$. External delta-prime is

$$\Delta_{\text{ext}}' = \frac{\delta_0 + \gamma \tau_w \delta_\infty}{\psi_0 + \gamma \tau_w \psi_\infty}$$

•
$$\Delta'_{\text{ext}} = \Delta'_{\text{int}}$$
 gives
 $\gamma \tau_w = -\frac{|\omega'_A|\psi_0 - \delta_0 j\pi\omega_0}{|\omega'_A|\psi_\infty - \delta_\infty j\pi\omega_0}$

- \bullet Wall stabilized case: $\psi_0 < 0,$ and $\psi_\infty, \delta_0, \delta_\infty > 0$
- RWM rotates in the direction of plasma flow
- RWM rotation $\rightarrow 0$ as $\omega_0 \rightarrow 0, \infty$
- Required ω_0 for stability $\rightarrow 0$ near ideal-wall marginal point $\psi_{\infty} \rightarrow 0$.

- Toroidal ideal-MHD predictions for critical rotation velocity $> 0.02v_A$ in $q \sim 2$ region
- Ideal-MHD threshold is generally some fraction higher than experimental results (Garofalo, et al 2002). Example: 50% higher than experiment for DIII-D discharge 92544.
- Predicted critical rotation decreases if extra drag mechanism is introduced.
- Good candidate ion Landau damping.
- Previously modeled in MARS as a parallel viscosity (parallel sound wave damping model)

$$\vec{F}_{\rm visc} = -\kappa_{\parallel} |k_{\parallel}| v_{th,i} \rho \vec{v}_{\parallel}$$

- Drift-kinetic analysis showed reduced damping by $\sim (v_{\phi}/v_s)^6 (R/a)^3$. What κ_{\parallel} to use?
- New approach use kinetic large-aspect-ratio theory to approximate dissipative terms.
- Semikinetic damping model gives lower critical rotation and reproduces error field amplification experiments.

- Follow simplified drift-kinetic large-aspect-ratio analysis (Bondeson & Chu 1996)
- Take imaginary part of kinetic ΔW evaluated for $\omega = \omega_0$ and add as a force acting on \vec{v}_{\perp} :

$$j \operatorname{Im}(\Delta W_{C} + \Delta W_{T}) = -\frac{1}{2} \int \vec{F}_{\text{diss}} \cdot \vec{\xi}_{\perp}^{*} d^{3}x, \quad H = \mu Q_{L} + m v_{\parallel}^{2} \vec{\xi} \cdot \vec{\kappa}$$
$$\Delta W_{T} = \frac{1}{2} \sum_{m'} \int d^{3}x \int_{trapped} d\Gamma \left(-\frac{\partial f}{\partial E} \right) \frac{\omega}{\omega + m' \omega_{b}} | < \exp(j\chi_{m'})H > |^{2}$$
$$\Delta W_{C} = \frac{1}{2} \sum_{m'} \int d^{3}x \int_{circ} d\Gamma \left(-\frac{\partial f}{\partial E} \right) \frac{\omega}{\omega - (nq - m')\omega_{t}} | < \exp(j\chi_{m'})H > |^{2}$$

- Toroidal coupling: *m* component of \vec{b} couples to $m \pm 1$ components of parallel motion.
- Strong kinetic damping even at low rotation: m = 2 component of \vec{b} couples to m = 1, 3 components of \vec{v}_{\parallel} which has thermal phase velocity close to q = 1, 3.
- Landau damping is very nonlocal. Even at $\omega_0 \sim 0.02 \omega_A$ momentum transfer is spread out over entire plasma.

DIII-D #109174

Experimental data from R. La Haye

- Kinetic damping model gives good prediction of critical rotation speed.
- \bullet Parallel sound wave damping model with small $\kappa_{||}$ also works, but large $\kappa_{||}$ somewhat fails.
- \bullet For many other equilibria, larger $\kappa_{||}$ is more stabilizing!

DIII-D #109174

- \bullet At fast rotation, kinetic damping is strong around regions $q\sim2,$ and quite global
- m = 2 component of \vec{b} drives m = 1, 3 components of $\vec{v}_{||}$

DIII-D #110634

Experimental data from A. Garofalo

- Discharge with low $q_{95} \simeq 2.52$
- Experiments: rotational stabilization becomes more difficult with decreasing q₉₅

DIII-D #110634

- Kinetic model predicts stabilization at experimental rotation frequency at t = 2150ms
- Scanning q_{95} , with fixed $\beta = 3.78\%$, gives correct trend

ITER steady state Scenario-4

• $R_0 = 6.35m$, a = 1.85m, $I_p = 9$ MA, Q = 5

- Highly shaped plasma: $\kappa_{sep} = 1.97, \ \ \delta_{sep} = 0.58$
- **Design:** $\beta_N = 2.57$
- MARS: $\beta_N^{no-wall} \simeq 2.45$, $\beta_N^{ideal-wall} \simeq 3.65$

- With uniform rotation profile, parallel damping model predicts critical central rotation frequency $\lesssim 2\% \omega_A$; kinetic damping gives $\lesssim 0.5\% \omega_A$
- With predicted rotation profile, parallel damping model gives critical rotation at about $5-6\%\omega_A$; kinetic model gives $\lesssim 2\%\omega_A$
- Predicted ITER central rotation frequency is about 2% ω_A
- Generally, blanket slightly increases critical rotation

Single mode:

$$\begin{split} \Psi &= \Psi_p \left(\frac{r}{r_w} \right)^{-m} + \Psi_w \begin{cases} \left(\frac{r}{r_w} \right)^m, & r \le r_w \\ \left(\frac{r}{r_w} \right)^{-m}, & r > r_w \end{cases} + \Psi_f \begin{cases} \left(\frac{r}{r_f} \right)^m, & r \le r_f \\ \left(\frac{r}{r_f} \right)^{-m}, & r > r_f \end{cases} \\ \frac{\Psi'_{r=a+}}{\Psi_{r=a}} &= -\frac{m}{a} (1 + x + jy) \\ \gamma \tau_w &= r_w \Delta'_w = r_w \frac{\Psi'_{r_w+} - \Psi'_{r_w-}}{\Psi_{r_w}} \\ \Psi_f &= -K \cdot r_w \Psi'_{r_w-} \qquad \text{(internal poloidal sensor)} \end{split}$$

$$\implies P_1^{\theta} = \left(\frac{r_w}{r_f}\right)^m \frac{2m}{s - s_0} \left(\frac{2}{H} - 1\right), \quad s_0 = 2m\left(\frac{1}{H} - 1\right), \quad H = 1 - \frac{x + jy}{2 + x + jy} \left(\frac{r_w}{a}\right)^{2m}$$

Simplified theory vs. MARS

Single mode cylindrical model

- Phase of optimized controller gain corresponds to rotation direction, increases with increasing rotation frequency
- For ITER plasma, when performance constraint (J_S) is not very strict, rotation helps feedback, in terms of required peak voltage for feedback coils

Toroidal computation by MARS

3

Js

3.5

5

0L 2 0.016

2.5

Experimental data from T. Hender

- Weak parallel sound wave damping does not reproduce experimental behavior of (static) error field amplification
- Strong parallel sound wave damping or kinetic damping model works well
- Kinetic damping model has no free parameter!
- RFA serves good tool to test different damping models

EFA increases with β - no sharp threshold at no wall limit

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Phase also agrees well MARS simulation

Tim Hender ITPA Meeting 14-17 July 2003

- No clear resonant effect at experimental plasma rotation speed
- Clear resonant effect should be seen at slowed-down rotation

Conclusions

- n = 1 RWM can be feedback controlled for β up to $\beta^{\text{no wall}} + C_{\beta}(\beta^{\text{ideal wall}} \beta^{\text{no wall}})$ with $C_{\beta} \sim 0.6 0.8$, by
 - single feedback coil outside the resistive wall
 - poloidal sensors inside the vessel
 - PID controller
- Ideal MHD theory, with adequate choice of damping mechanisms, gives reasonable prediction of rotational stabilization of RWM.
- RFA can be very useful to distinguish different damping models for RWM in a rotating plasma.
- Damping models involving strong damping give better prediction of the critical rotation speed and RFA. Kinetic model without free parameter usually agrees with experiment.
- Synergy between rotation and feedback occurs as long as rotation stabilizes RWM.