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Feedback RWM control diagram
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� Input signal: current I f or voltage Vf

� Output signal: flux Ψs or voltage Vs

� Plasma dynamics: P1

�

s

�

– frequency dependent transfer function

� λ � fraction of poloidal width subtended by active coil
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Feedback RWM control logic
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Frequency response of the plasma-wall system to feedback currents is determined by a

non-dimensional transfer function P1

�

s

�

.

Characteristic equation of closed loop 1
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� Voltage control: Vf

�	 KVs

Introduce non-dimensional transfer function P2
�

s
�

for the (normalized) loaded self-inductance

of the active coils.
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� Plasma response model

�

P1

�
s

��� P2
�

s
��

can be constructed analytically for cylindrical equi-

libria, and computationally for 2D toroidal hight-β equilibria using MARS-F code.

Liu et al. Stabilization of the Resistive Wall Mode by Magnetic Feedback and Plasma Rotation 4/34



Feedback Cylindrical theory - single mode
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Feedback Cylindrical theory - single mode

� Characteristic equation:

1
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� Nyquist curve: K
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� Single harmonic is easily controlled by

proportional current control
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Feedback works well under single-mode conditions.
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Feedback Cylindrical theory - multiple modes

Decompose antenna current in Fourier components )

Transfer function P
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Poles in Mm correspond to growth-rates for RWM without feedback.
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Feedback Theory vs. MARS-F computations
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� MARS-F gives similar transfer functions

for (almost) equivalent cylindrical equi-

librium (R




a � 10)

� Toroidal calculations (R




a / 3) give

more optimistic results than cylindrical

theory

� Reason: ballooning toroidal mode struc-

ture
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Feedback Poloidal vs. radial sensors
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� Poloidal sensors are superior to radial sensors

� Reasons:

– Radial sensors on the wall cannot detect a mode near ideal-wall limit

0

b 1 n̂ �wall

2 0
– Poloidal sensors strongly decouple with feedback currents 3 detect more perturbations from plasma

– Residual cancellation for stable modes 3 poloidal sensors “see” mostly the unstable mode
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Feedback Controller design

Performance specifications

� Sensitivity S � 1 � �

1

�

KP

�

� Stability margin: JS
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∞
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�

S
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marginal stability.

� Optimize controller to minimize control activity, e.g, max voltage in initial

value problem

PID controller for voltage control
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Control can be made robust w.r.t. plasma pressure, total current, rotation.
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Feedback RWM control for ITER plasmas
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� EFDA report No. 02-691

� Y.Q. Liu, A. Bondeson, Y. Gri-

bov, A. Polevoi, “Stabiliza-

tion of resistive wall modes

in ITER by active feedback

and toroidal rotation”, to ap-

pear in Nucl. Fusion

� Both walls and blanket are modeled as continuous, 2D thin shells

� τw

� 0 6188s for double wall, τb

� 9ms for blanket
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Feedback RWM control for ITER plasmas
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� Growth rates of both ideal kink and RWM show βideal �wall
N

/ 3 765 without blanket

� Beta limits agree well with KINX and PEST-2

� RWM growth rates agree well with KINX

� Blanket has minor modification to RWM growth rates, as long as βN is not close to ideal

wall limit
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Feedback RWM control for ITER plasmas
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� With poloidal sensors inside the first wall

�

proportional control only, RWM can be stabi-

lized up to Cβ

� �βN

	 βno �wall
N

� 
 �

βideal �wall
N

	 βno �wall
N

� � 60%

� Adding D-action can stabilize the mode for Cβ

'�8 70%

� Feedback with radial sensors can not stabilize RWM for Cβ

� 47%, with any (stable) PID

controller

� Blanket modifies only slightly transfer functions

Liu et al. Stabilization of the Resistive Wall Mode by Magnetic Feedback and Plasma Rotation 13/34



Feedback RWM control for ITER plasmas
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� Controller optimization made for internal poloidal sensors

� With good performance (solid line), RWM can be stabilized up to Cβ

� 50% if peak voltage

limit is 40V/turn, and up to Cβ

� 60% if voltage limit is 300V/turn

� With looser performance (dash-dotted line), RWM can be stabilized up to Cβ

� 60% if

voltage limit is 40V/turn, and up to Cβ

� 80% if voltage limit is 300V/turn
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Feedback MIMO/MISO control
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� MIMO (Multiple Input Multiple Output): each pair of active and sensor coils is connected

by an independent controller

� MISO (Multiple Input Single Output): all active coils are connected to the same sensor

coil by independent controllers

� Λ � poloidal distance between centers of two neighboring coils

Λ 9 λ : gap between coils; Λ ' λ : coils overlap; Λ � 0 : Single Input Single Output
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Feedback MIMO control - cylindrical theory
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� With poloidal sensors, single coil (Λ � 0)

works better than multiple coils (Λ 9 0)

in terms of control activity.

� With radial sensors, MIMO system im-

proves feedback control. Good results

are obtained when three active coils are

well separated (Λ 9 λ) � ( reduced coil

coupling.
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Feedback MIMO control - toroidal computations

sensor ctrl. JS JT Ju

SISO pol. single 1.00 1.73 0.98

MIMO pol. identic. 2.11 2.50 1.32

MIMO pol. diff. 1.36 1.92 0.69

SISO rad. single 1.37 1.68 3.65

MIMO rad. identic. 1.46 1.59 24.7

MIMO rad. diff. 1.87 2.10 3.48

� For both types of sensors, MIMO with identical controllers gives worse results than SISO,

in terms of control activity Ju

� � �KS

� �

∞

� MIMO with different controllers (in diagonal controller matrix) gives comparable results

to SISO

� Results for a JET shaped advanced equilibrium, more study with DIII-D plasmas expected

� MARS-F is now used at General Atomics (M.S. Chu et al. APS DPP03 invited talk)
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Rotation Cylindrical theory - continuum damping

Theory for cylindrical tokamak:
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ω0 (independent of γ)
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Rotation Cylindrical theory - continuum damping

� ψ0
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� Wall stabilized case: ψ0

' 0, and

ψ∞� δ0� δ∞

9 0

� RWM rotates in the direction of plasma

flow
� RWM rotation : 0 as ω0

: 0� ∞

� Required ω0 for stability : 0 near

ideal-wall marginal point ψ∞

: 0.
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Rotation Ion Landau damping

� Toroidal ideal-MHD predictions for critical rotation velocity

9 0 702vA in q 8 2 region

� Ideal-MHD threshold is generally some fraction higher than experimental results (Garo-

falo, et al 2002). Example: 50% higher than experiment for DIII-D discharge 92544.

� Predicted critical rotation decreases if extra drag mechanism is introduced.

� Good candidate - ion Landau damping.

� Previously modeled in MARS as a parallel viscosity (parallel sound wave damping model)

�

Fvisc

�	 κ B �k B �vth Ciρ �
v B

� Drift-kinetic analysis showed reduced damping by 8 �vφ




vs

�

6

�

R




a

�

3. What κ B to use?

� New approach - use kinetic large-aspect-ratio theory to approximate dissipative terms.

� Semikinetic damping model gives lower critical rotation and reproduces error field ampli-

fication experiments.

Liu et al. Stabilization of the Resistive Wall Mode by Magnetic Feedback and Plasma Rotation 20/34



Rotation Semikinetic damping

� Follow simplified drift-kinetic large-aspect-ratio analysis (Bondeson & Chu 1996)

� Take imaginary part of kinetic ∆W evaluated for ω � ω0 and add as a force acting on

�
v D:
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� Toroidal coupling: m component of

�

b couples to m
K

1 components of parallel motion.

� Strong kinetic damping even at low rotation: m � 2 component of

�

b couples to m � 1� 3

components of

�

v B which has thermal phase velocity close to q � 1� 3.

� Landau damping is very nonlocal. Even at ω0

8 0 702ωA momentum transfer is spread out

over entire plasma.
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Rotation DIII-D #109174
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Experimental data from R. La Haye

� Kinetic damping model gives good prediction of critical rotation speed.

� Parallel sound wave damping model with small κ G G also works, but large κ G G somewhat

fails.

� For many other equilibria, larger κ G G is more stabilizing!
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Rotation DIII-D #109174
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� Slow rotation ωrot

�

ωexp

� 0 61 � Fast rotation ωrot

�

ωexp

� 1 60

� At fast rotation, kinetic damping is strong around regions q L 2, and quite

global

� m � 2 component of

;
b drives m � 1 3 components of

;

v � �
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Rotation DIII-D #110634
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Experimental data from A. Garofalo

� Discharge with low q95

? 2 652

� Experiments: rotational stabilization becomes more difficult with decreas-

ing q95
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Rotation DIII-D #110634
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D3D#110634        
β=3.78% fixed 

� Kinetic model predicts stabilization at experimental rotation frequency at t � 2150ms

� Scanning q95, with fixed β � 3 778%, gives correct trend
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Rotation ITER steady state Scenario-4
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� R0

� 6 735m� a � 1 785m� Ip

� 9MA� Q � 5

� Highly shaped plasma: κsep

� 1 797� δsep

� 0 758

� Design: βN

� 2 757

� MARS: βno �wall
N

/ 2 745� βideal �wall
N

/ 3 765
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Rotation ITER steady state Scenario-4
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� With uniform rotation profile, parallel damping model predicts critical central rotation

frequency

'M8 2%ωA; kinetic damping gives
'8 0 75%ωA

� With predicted rotation profile, parallel damping model gives critical rotation at about

5	 6%ωA; kinetic model gives

'N8 2%ωA

� Predicted ITER central rotation frequency is about 2%ωA

� Generally, blanket slightly increases critical rotation
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Feedback

O

Rotation Simplified cylindrical theory
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Feedback

O

Rotation Simplified theory vs. MARS

Single mode cylindrical model Toroidal computation by MARS
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� Phase of optimized controller gain corre-

sponds to rotation direction, increases with

increasing rotation frequency

� For ITER plasma, when performance con-

straint (JS) is not very strict, rotation helps

feedback, in terms of required peak voltage
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RFA JET #59223 - static error field
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Experimental data from T. Hender

� Weak parallel sound wave damping does not reproduce experimental behavior of (static)

error field amplification

� Strong parallel sound wave damping or kinetic damping model works well

� Kinetic damping model has no free parameter!

� RFA serves good tool to test different damping models
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Tim Hender ITPA Meeting 14-17 July 2003

EFA increases with ββββ - no sharp threshold at no wall limit
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RFA JET #59223 - Time-varying error field
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RFA at slower rotation 

� No clear resonant effect at experimental plasma rotation speed

� Clear resonant effect should be seen at slowed-down rotation
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Conclusions

� n � 1 RWM can be feedback controlled for β up to βno wall �

Cβ

�

βideal wall �
βno wall � with Cβ

L 0 66 � 0 68, by

– single feedback coil outside the resistive wall

– poloidal sensors inside the vessel

– PID controller

� Ideal MHD theory, with adequate choice of damping mechanisms, gives

reasonable prediction of rotational stabilization of RWM.

� RFA can be very useful to distinguish different damping models for RWM

in a rotating plasma.

� Damping models involving strong damping give better prediction of the

critical rotation speed and RFA. Kinetic model without free parameter usu-

ally agrees with experiment.

� Synergy between rotation and feedback occurs as long as rotation stabi-

lizes RWM.
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