Active Feedback Physics Design Study
Plan for Global MHD Instabilities in KSTAR

S. A. Sabbagh, G.A. Navratil, J.M. Bialek

Department of Applied Physics and Applied Mathematics,
Columbia University, New York, NY, USA

US-Korea Workshop
Opportunities for Expanded Fusion Science and
Technology Collaborations with the KSTAR Project

May 19, 2004
General Atomics, San Diego, CA
The Columbia University group could help improve KSTAR plasma stabilization system

• Motivation
 - The steady-state KSTAR device design incorporates global mode stabilization (GMS) hardware for increased performance
 - Full physics assessment of the hardware effectiveness is desired

• Outline
 - Objectives for assessing sustained mode stabilization in KSTAR
 - Supporting research of existing and planned devices
 - Research plan for KSTAR global mode stabilization study
 - Budget
Objectives of GMS physics design study follow required elements

• **Equilibrium**
 - Use KSTAR design basis equilibria that span operational space (β, shape, q)
 - Perform equilibrium variations as desired in coordination with KSTAR team
 - Use KSTAR equilibrium reconstructions once device produces plasma

• **Stability**
 - DCON – input to VALEN
 - Analyze stability space vs. KSTAR plasma parameters

• **Feedback**
 - VALEN
 - Mode growth, time-evolved stabilization, critical feedback time delay

• **Simulation development / present experimentation**
 - Present upgrades include rotation, multi-mode capability, etc.
 - RWM stabilization physics understanding, critical rotation frequency, etc.
Columbia U. GMS studies closely couple theory & XP

- **Applied / Experimental**
 - DIII-D
 - Design/analysis of results of active feedback system with internal coils (Garofalo, Navratil, Reimerdes,)
 - NSTX
 - Design/analysis of passive stabilizer system and active feedback system with external coils (Sabbagh, Sontag)
 - HBT-EP
 - Experiment/theory (Navratil, Bialek, Mauel, Boozer)
 - Interactive
 - Common tools, standard (shared) databases, remote meetings

- **Theoretical**
 - VALEN-3D code design/development (Bialek, Boozer)

- **Predictive**
 - Analysis of future devices (Bialek, Navratil)
 - ITER, FIRE, JT-60SC design studies conducted
ITER active coil modification can significantly raise stable β_N

- Original external coil design for ITER stabilizes up to $\beta_N = 2.7$
- Proposed improvement raises maximum stable β_N to near 5
- Dual-wall vacuum vessel and blanket used in VALEN model

VALEN dual-wall vessel / blanket model
(full view)

Active feedback coil modification
(coils in ports)
NSTX control modeling predicts 68% stable margin above $\beta_{\text{Nno-wall}}$ with initial external coil system.

- Control coil / sensor design with realistic geometry
- Internal control coil design computed to reach $C_\beta = 94\%$

(Equilibria used have $\beta_{\text{Nno-wall}} = 5.1$; $\beta_{\text{Nwall}} = 6.9$)
NSTX model with control coils among plates has only 50% stable margin above $\beta_{N\text{no-wall}}$

- Active coil / passive plate coupling leads to reduced performance

![Graph showing growth rate vs β_N with active and passive gain lines](graph.png)

Modeled active feedback coils
KSTAR active stabilization system might be improved

- KSTAR improvements can be explored as in ITER, FIRE, DIII-D, NSTX, HBT-EP
- Minimizing coil/plate coupling led to improvements in NSTX design
- VALEN can provide correct amplitude and phase relation for KSTAR FEC coil elements to stabilize n = 1,2 resistive wall modes
Timeline for Columbia U. KSTAR GMS Study

- **First Year**
 - Equilibrium calculations based on present hardware design
 - Use KSTAR design basis equilibria; modify in coordination with KSTAR team
 - Stability / feedback calculations
 - Determine most important stability sensitivity to parameter variation
 - Set up VALEN model; determine performance of present KSTAR design
 - Extend VALEN model to assess possible passive plate improvements

- **Second Year (first plasma by end of this year)**
 - Assess baseline active feedback system design; project improvements
 - Model time-dependent stabilization, critical time delay for feedback
 - Examine stability of first experimental KSTAR equilibrium reconstructions

- **Third Year (high beta plasmas)**
 - Stability of high beta experimental KSTAR equilibrium reconstructions
 - Verification of RWM growth rate under passive stabilization
 - Participate in experimental determination of critical rotation profile for stability
 - Investigate improvements for feedback system based on high beta results
Columbia U. Staffing and Budget for KSTAR Study

• CU three year budget
 • First Year (~$150k)
 • 5 months senior research scientists
 • 6 months associate research scientist
 • Second Year (~$200k)
 • 5 months senior research scientists
 • 12 months associate research scientist
 • Third Year (~$200k)
 • 5 months senior research scientists
 • 12 months associate research scientist

• Columbia RWM modeling group presently oversubscribed
 • studies of ITER, DIII-D, NSTX, HBT-EP, JT-60SC, (JET, C-MOD)
 • new staff / new budget resources required to perform KSTAR studies