[BoldFont $=$ LinLibertine $_{R}$ B.otf, ItalicFont $=$ LinLibertine $_{R} I$. ot f, BoldItalicFont $=$ LinLibertine $_{R}$ BI.otf, Path $=$ /opt/indico/.venv/lib/python2.7/site-packages/indico fonts $\left.^{\prime}\right]\left[\right.$ BoldFont $=$ LinBiolinum $_{R}$ B.otf , ItalicFont $=$ LinBiolinum $_{R}$ I.otf, Path $=/$ opt/indico/.venv/lib/python2.7/site - packages/indico ${ }_{f}$ onts $/$]

2.48 High-Resolving-Power, Streaked X-Ray Spectroscopy on the OMEGA EP Laser System

Monday, 16 April 2018 10:46 (120)

Abstract

A high-resolving-power, streaked x-ray spectrometer is being developed and tested on the OMEGA EP Laser System to study temperature-equilibration dynamics in rapidly heated metal. The instrument is based on two diagnostic channels, each with a spherical Bragg crystal. Channel 1 couples a spherical Si220 crystal to an x-ray streak camera. Channel 2 couples a second, identical crystal to an x-ray charge-coupled device (CCD), allowing for photometric calibration of the time-resolved spectrum. The instrument covers the spectral range of 7.97 to 8.11 keV , centered on the $\mathrm{Cu} \mathrm{Ka1} \mathrm{line} \mathrm{at} 8.05 \mathrm{keV}$. The time-resolved spectrometer is designed to achieve a resolving power of 2000 and a temporal resolution of 2 ps . The instrument capabilities are demonstrated by resolving the $\mathrm{Cu} \mathrm{Ka} 1,2$ doublet on high-power shots. Time-resolved $\mathrm{Cu} \mathrm{K} \alpha$ spectra for a wide range of high-power laser and target interactions, where heating and K α emission is generated by hot-electron-energy deposition, will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

Primary author(s) : NILSON, Philip (Laboratory for Laser Energetics)
Co-author(s) : EHRNE, Frank (Laboratory for Laser Energetics); TAYLOR, Cody (Laboratory for Laser Energetics); MILEHAM, Chad (Laboratory for Laser Energetics); MASTROSIMONE, Dino (Laboratory for Laser Energetics); JUNGQUIST, Robert (Laboratory for Laser Energetics); BONI, Robert (Laboratory for Laser Energetics); HASSETT, Jeremy (Laboratory for Laser Energetics); STILLMAN, Collin (Laboratory for Laser Energetics); IVANCIC, Steven (Laboratory for Laser Energetics); LONOBILE, Dave (Laboratory for Laser Energetics); KIDDER, Richard (Laboratory for Laser Energetics); SHOUP, Milt (Laboratory for Laser Energetics); SOLODOV, Andrey (Laboratory for Laser Energetics); SEFKOW, Adam (Laboratory for Laser Energetics); STOECKL, Christian (Laboratory for Laser Energetics); THEOBALD, Wolfgang (Laboratory for Laser Energetics); FROULA, Dustin (Laboratory for Laser Energetics); HILL, Ken (Princeton Plasma Physics Laboratory); GAO, Lan (Princeton Plasma Physics Laboratory); BITTER, Manfred (Princeton Plasma Physics Laboratory); EFTHIMION, Philip (Princeton Plasma Physics Laboratory); MEYERHOFER, David` (Los Alamos National Laboratory)

Presenter(s) : NILSON, Philip (Laboratory for Laser Energetics); EHRNE, Frank (Laboratory for Laser Energetics); TAYLOR, Cody (Laboratory for Laser Energetics); MILEHAM, Chad (Laboratory for Laser Energetics); MASTROSIMONE, Dino (Laboratory for Laser Energetics); JUNGQUIST, Robert (Laboratory for Laser Energetics); BONI, Robert (Laboratory for Laser Energetics); HASSETT, Jeremy (Laboratory for Laser Energetics); STILLMAN, Collin (Laboratory for Laser Energetics); IVANCIC, Steven (Laboratory for Laser Energetics); LONOBILE, Dave (Laboratory for Laser Energetics); KIDDER, Richard (Laboratory for Laser Energetics); SHOUP, Milt (Laboratory for Laser Energetics); SOLODOV, Andrey (Laboratory for Laser Energetics); SEFKOW, Adam (Laboratory for Laser Energetics); STOECKL, Christian (Laboratory for Laser Energetics); THEOBALD, Wolfgang (Laboratory for Laser Energetics); FROULA, Dustin (Laboratory for Laser Energetics); HILL, Ken (Princeton Plasma Physics

Laboratory); GAO, Lan (Princeton Plasma Physics Laboratory); BITTER, Manfred (Princeton Plasma Physics Laboratory); EFTHIMION, Philip (Princeton Plasma Physics Laboratory); MEYERHOFER, David` (Los Alamos National Laboratory)

Session Classification : Session \#2, Monday Morning Poster Session

