8.5 Forward modeling for the development of a Laser-Induced Rydberg Spectroscopy diagnostic on NSTX-U

Tuesday, 17 April 2018 16:00 (120)

In fusion devices, subtle changes at the plasma edge (pedestal and scrape-off layer) can have a dramatic influence on confinement performance and anomalous transport properties of the plasma. In order to better understand physical processes happening in this region, we describe a detailed analysis of a novel diagnostic allowing the direct measurement of the local radial electric fields in the pedestal region in NSTX-U. Using a tunable probe laser to deplete the naturally populated $\mathrm{n}=3$ level to a Rydberg state and the existing Thomsonscattering optics, it is shown that the local electric field can be measured through the Stark induced resonances observed as a dip in the $D_{-} \alpha$ emission. The proposed diagnostic gives measurements resolved both in space and time with a 10 ms time-step. Using our simulated absorption spectrum; a precision of $\sim 2 \mathrm{kV} / \mathrm{m}$ in regions with a local electric field of $50 \mathrm{kV} / \mathrm{m}$ is predicted when we account for density fluctuations and statistical uncertainties due to the acquisition and fitting process.

Primary author(s) : REYMOND, Loïc (Swiss Plasma Center - EPFL)
Co-author(s) : DIALLO, Ahmed (Princeton Plasma Physics Laboratory - Princeton University); VEKSELMAN, Vladislav (Princeton Plasma Physics Laboratory - Princeton University)
Presenter(s) : REYMOND, Loïc (Swiss Plasma Center - EPFL); DIALLO, Ahmed (Princeton Plasma Physics Laboratory - Princeton University); VEKSELMAN, Vladislav (Princeton Plasma Physics Laboratory - Princeton University)
Session Classification : Session \#8, Tuesday Afternoon Poster Session

