$[ BoldFont = LinLibertine_RB.otf, ItalicFont = LinLibertine_RI.otf, BoldItalicFont = LinLibertine_RBI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RB.otf, ItalicFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RB.otf, ItalicFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RB.otf, ItalicFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RB.otf, ItalicFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RB.otf, ItalicFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [BoldFont = LinBiolinum_RI.otf, Path = /opt/indico/.venv/lib/python2.7/site-packages/indico_fonts/] [Bol$ 

HTPD 2018



Contribution ID : 230

Type : not specified

## 4.48 Velocity correction for nuclear activation detectors at the NIF

Monday, 16 April 2018 20:31 (120)

The velocity distribution of the hotspot in an Inertial Confinement Fusion (ICF) implosion changes the spectra of fusion neutrons emitted from the experiment as a function of viewing angle. These velocity-induced spectral changes affect the response of nuclear activation detectors (NADs) positioned around the experiment, and must be accounted for to correctly extract information about areal density ( $\rho$ R) asymmetry from the data. Three mechanisms through which average hotspot velocity affects NAD activation are addressed: change in activation cross-section due to Doppler shift of the mean neutron energy, kinematic increase in neutron fluence, and change in scattering cross-section due to Doppler shift. Using the hotspot velocity inferred from NTOF measurements of D-T and D-D fusion neutrons, the hotspot velocity is shown to account for 80% of the observed NAD activation asymmetry in a calibration shot with negligible fuel  $\rho$ R. A robust method to evaluate uncertainties in spherical-harmonic fits to the NAD data due to the velocity correction and detector uncertainty is presented.

Primary author(s) : RINDERKNECHT, Hans (Lawrence Livermore National Laboratory)

Co-author(s) : BIONTA, Richard (Lawrence Livermore National Laboratory); KHATER, Hesham (Lawrence Livermore National Laboratory); GRIM, Gary (Lawrence Livermore National Laboratory)

Presenter(s): RINDERKNECHT, Hans (Lawrence Livermore National Laboratory); BIONTA, Richard (Lawrence Livermore National Laboratory); KHATER, Hesham (Lawrence Livermore National Laboratory); GRIM, Gary (Lawrence Livermore National Laboratory)

Session Classification : Session #4, Monday Night Poster Session