DIII-D is not ITER: Tungsten PFC's could reduce DIII-D's relevance and uniqueness

D. R. Ernst

Massachusetts Institute of Technology

Presented at the

DIII-D Wall Change Community Forum June 12 - 13, 2024 Email: <u>dernst@psfc.mit.edu</u>

Disclaimer: Any views expressed herein, in this informal workshop presentation, are the author's and not necessarily those of contributors, collaborators, their institutions, or DOE.

Ernst / DIII-D Wall Workshop / June 12, 2024

Plasma Science and Fusion Center

ITER can tolerate tungsten according to present predictions

- ITER is 33 × the volume of DIII-D with 2-5 × n_e , 2-3 × core T_e , low v_* , low rotation
 - Core $T_e \sim 10$ keV on W cooling curve radiates 5-8x less than DIII-D (for same $n_w n_e$)
 - Due to higher n_e, ITER will have an SOL relatively opaque to neutrals
 - Thus, higher n_e^{sep}/n_e^{ped} than DIII-D is expected
 - As a result, ITER pedestals are predicted to screen W

$$rac{R}{L_{nZ}}=-rac{RV_Z}{D_Z}=Z\left(rac{R}{L_{ni}}-0.5rac{R}{L_{Ti}}
ight)=Zrac{R}{L_{ni}}(1-0.5\eta_i)$$

- In local uniform limit, M=0, temperature gradient screens impurities for $\eta_i > 2$ (qualitative for illustration, very approximate under idealized assumptions, but screening is predicted using NEO+integrated modeling)

• ITER W concentrations predicted ~100 × lower than DIII-D

 W concentration profiles in ITER are expected to be ~flat in the core and peaked near the LCFS

"Report on Open Issues in the new ITER Baseline with a W-wall," ITPA Transport and Confinement Topical Group & ITPA Pedestal and Edge Physics Topical Group, April 2024: "Tungsten transport in the pedestal," R. M. McDermott, X. Xueqiao, C. Angioni, D. R. Ernst, C. S. Chang, M. Willensdorfer, S. Q. Korving, T. Odstrcil, B. Victor

Present understanding suggests DIII-D operates in the wrong part of parameter space for tungsten

- DIII-D is susceptible to W accumulation and degradation
 - Lower density, higher SOL temperature increases sheath potential and thus physical sputtering source, located close to pedestal foot
 - W is drawn in by strong pedestal neoclassical convection due to steep pedestal ion density gradient (low n_e^{sep}/n_e^{ped}) and screening is hard to achieve
 - At low v_* , with 80% of ions trapped and $\rho_{\theta} \sim w_{ped}$, pedestal T_i is flattened by orbit averaging, difficult to increase pedestal ∇T_i
- Plasma targets a source-free equilibrium W density
 - W accumulates on-axis and near pedestal top, reducing $(P_{tot} P_{rad}^{core})/P_{LH}$ and degrading performance
 - Lower core T_e puts DIII-D in a bad place in the W cooling curve
 - ECH does not reduce W inventory unless ELMy
 - Reducing W source just slows down evolution toward this equilibrium

Target temperatures are generally too high for attached conditions with W divertor in both DIII-D and ITER: Above W sputtering threshold

- ITER:
 - Large R = 6.2 m, $n_e^{sep} \sim 4e19 \ m^{-3}$ offset by $T_e^{sep} \sim 300 \ eV$
- Ion Impact Energy
 - $_{\circ}$ Sheath potential $\phi = 3T_e/e$

•
$$E_{impact} \simeq 2T_i + e\phi \approx 5T_t$$

Ernst / DIII-D Wall Workshop / June 12, 2024

	DIII-D H-Modes	ITER H-Modes [ITPA W report (4/24)]
Pedestal W Profiles	 R/L_{nW} = RV_{nc}/D_{nc} W transport is neoclassical Strong W pinch due to Z dn_i/dr Local peak in W near pedestal top Can only reduce source by cooling divertor, or screen W Screening W requires high n^{sep}_e/n^{ped}_e If no screening, need ELMs to flush W 	 R/L_{nW} = RV_{nc}/D_{nc} W transport is neoclassical W screening by Z dT_i/dr predicted due to high n_e^{sep}/n_e^{ped}~0.3-0.5 (opaqueness) W profile peaks near LCFS ELMs and turbulence <u>increase</u> n_W^{ped} by flattening profile
Core W Profiles	 R/L_{nW} = RV_{nc}/D_{turb} Strong neoclassical pinch W accumulation <u>on axis</u> & <u>ped. top</u> ECH helps if ELMy 	$\begin{array}{l} {\rm R/L_{nW}} = RV_{\rm turb}/D_{\rm turb} \\ \bullet {\rm low} \ \nu_*, \ {\rm low} \ {\rm Mach} \ \# \\ \bullet {\rm no} \ {\rm W} \ {\rm accumulation}, \ {\rm flat} \ {\rm profile} \\ n_W/n_e \ \simeq n_W^{ped}/n_e \end{array}$
Max. allowable core W conc.	$\begin{array}{l} n_W(0)/n_e(0){\sim}10^{-3}\\ \bullet (P_{tot}-P_{rad})>P_{LH} \text{ , } T_e{\sim}4 \text{ keV}\\ \bullet \text{Bad place in W cooling curve} \end{array}$	$ \langle n_W/n_e \rangle \sim 2 - 3.5 \times 10^{-5} $ • (P _{tot} - P _{rad}) > P _{LH} , T _e ~10 keV • V ^{ITER} _{plasma} = 33V ^{D3D} _{plasma} limits $\int dV p_{rad}$
Expected W density	$n_W \sim 10^{15} - 10^{16} m^{-3}$ • As measured	$n_W < 2 - 3.5 \times 10^{15} \ m^{-3}$ • As simulated Ernst 6/12/24

Does wall material matter, or just divertor? Simulated Carbon Sputtering from Beam Ion Loss not significant

- SPIRAL 6D particle orbit following code finds orbit-lost beam ions
- RUST-BCA 3D PIC Plasma
 Materials Interactions code
 calculates sputtering from lost
 beam ions impacting wall
- Steady state effect estimated under conservative assumptions $(\tau_C=1.0 \text{ s})$
- ∆n_C= 8x10¹⁶ m⁻³
- ∆Z_{eff} < 0.1
- However, 30L shine-thru has been problematic in QH-Mode, sputtering metals

A. Bortolon (PPPL), J. Drobny (Univ. of IL -UC), F. Scotti (LLNL), G. Kramer (PPPL)

Without ELMs, Tungsten can be Problematic (WPQH-Mode): Tungsten Radiative Instability Observed

- Accidential tungsten contamination in DIII-D lower divertor
- Large oscillations in core P_{rad} due to W degrading its own confinement by degrading pedestal
- Without carbon, the neoclassical influx of W would be several times stronger

Ernst (MIT), Anand (GA), Bortolon (PPPL), Eldon (GA), Odstrčil (GA), et al.

Nitrogen Injection Controlled Tungsten by Cooling Divertor, Also Reduced Carbon, but Nitrogen Accumulated in the Core

- Nitrogen injection with feedback to divertor P_{rad} controls W (x30 reduction in n_w/n_e)
- Impurity seeding contaminates H-Mode core unless screening can be achieved
- ECH reduces on-axis W but does not remove W unless ELMy

Ernst (MIT), Anand (GA), Bortolon (PPPL), Eldon (GA), Odstrčil (GA), et al.

In WPQH-Mode, ECH removes W from magnetics axis, but total radiation unaffected without ELMs

- Serious issues with W and Ba contamination in the 2022 campaign
- On-axis ECH in WPQH mode can trigger massive sawteeth + ELMs
 - Requires a fine tuning of ECH power and location
 - Does reduce near-axis W content
- But if total core P_{rad} not reduced, pedestal is still degraded

Impurity Confinement Time in WPQH-Mode Measured by Laser Blowoff (LBO) and is Consistent with Neoclassical for High Z

- Consistent with neoclassical estimates using NEO+Aurora for F, Ca
- Much shorter confinement time for C, N, similar to τ_E

Measured WPQH-Mode Impurity Confinement Time

• Carbon $\tau_p \sim \tau_E$ may be consistent with gyrokinetic turbulence predictions of TEMs

What will we learn from W in DIII-D that makes it worth severely limiting DIII-D operational space and constraining its unique flexibility?

• ITER is predicted to tolerate tungsten, but in a different regime than DIII-D

- ITER expected to have a broader pedestal density profile, helping screen impurities
- $_{\circ}$ Tungsten radiates 5-8x less for T_e >10 keV
- Experience shows that even a small areal density of W on the DIII-D lower divertor tiles degrades performance and prevents steady operation
 - When there are no ELMs and $v_{*e} \sim 0.1$ at pedestal top (i.e., future-relevant conditions)
 - Neoclassical impurity screening is hard to achieve in DIII-D due to its lower density and ion orbitaveraging of T_i across the pedestal (though it may be possible in some specific cases)
 - Must increase n_e^{sep}/n_e^{ped} to screen impurities (W and radiative gases) and also to detach divertor
 - Without carbon, it will be worse (neoclassical W pinch stronger)

• Like JET, ASDEX Upgrade, West, etc., tungsten in DIII-D will introduce major obstacles

- H-Mode operation restricted to higher density, higher collisionality regimes with reduced performance, and ELMs will be required to flush tungsten, pushing DIII-D closer to ASDEX Upgrade
- This will make DIII-D less future-relevant and unique, impacting its flexibility and operating regimes

• Need accurate and <u>valid</u> integrated simulations of W with PMI and pedestal GK turbulence to scope W impact (not just reduced models or local models)

Backup Slides

WPQH-Mode Achieved by Wall Conditioning, Lowering SOL Densities to Produce Sheath-limited, High $T_e \sim 150 \text{ eV}$ SOL

• High T_e \rightarrow High Sheath Potential \rightarrow High Impact Energy \rightarrow Sputtering

Xinxing Ma (GA), H. Wang (GA), T. Abrams (GA), D. Ernst (MIT) et al, submitted to Nucl. Fusion

Drifts are Essential to Reproduce Measured Upstream Carbon Impurity Densities in SOLPS-ITER Simulations of DIII-D WPQH-Mode

- Carbon 6+ Upstream Density Carbon 2+ Divertor Conc. 184833 3000-3500 ms TangTV (10¹⁸ m ⁻³) Measured 100 w/ Drifts CER Measured /ne w/ Drifts ⁺⁹0 u ², ¹ w/o Drifts w/o Drifts 0.85 0.9 0.95 1.05 0.95 1.05 Ψ_{N} Ψ_{N}
- High temperature, low v*^{SOL} sheath-limited SOL similar to future machines: Strong sputtering in attached conditions
- SOLPS-ITER validation against first divertor measurements in WPQH-Mode

Drifts move impurities out of private flux region and up inboard side

Xinxing Ma (GA), H. Wang (GA), T. Abrams (GA), D. Ernst (MIT) et al, submitted to Nucl. Fusion Ernst / DIII-D Wall Workshop / June 12, 2024

Scheduled Experiment will Screen Impurities by Creating "Super WPQH-Mode" at higher density using the new DIII-D Shape/Volume Rise

- Below shows a Standard QH-Mode from last campaign where pedestal top $\eta_i > 2$
- Core ITB also reduces impurity pinch by increasing $\eta_i \sim 1.5$
- Result: 1.8 < Z_{eff} < 2.4 and tungsten concentration is controlled

Achieved QH & WPQH-Mode in Hydrogen, reducing Z_{eff} from 3.4 \rightarrow 2.4; Obtained closely matched H & D pair by injecting carbon powder

- 10x reduction in physical sputtering of carbon by hydrogen relative to deuterium
- Greatly reduced Z_{eff} with reduced carbon sputtering

16

Predicted ExB Shear Suppression of Pedestal Turbulent Transport is Much Weaker at Small ρ_* in Future Machines

• Ratio of shearing rate to drift wave growth rate in pedestal of fixed width Δ scales^{1,2} with ρ_* , also increasing radial correlation lengths³

$$en_iE_r \simeq rac{dp_i}{dr} \sim rac{p_i}{\Delta}; \qquad \gamma_{
m lin} \sim rac{v_{Ti}}{\Delta}; \qquad \gamma_{
m E imes B} \simeq rac{1}{B}rac{dE_r}{dr}; \qquad \left|rac{\gamma_{
m E imes B}}{\gamma_{
m lin}} \sim rac{
ho_i}{\Delta} \sim rac{a}{\Delta}
ight|$$

 From theory⁴ and global pedestal gyrokinetic simulations,⁵ transport reduction due to ExB shear scales asymptotically as²

KBM (EPED): $\Delta \sim eta_p^{lpha_1}$ $lpha_1 \sim 0.5 - 0.75$

• This suggests pedestal turbulence may be sufficient to maintain ELM stability below the peeling-ballooning boundary⁶ _{'Kotschenreuther et al. IAEA v1. p.371 (1996).}

¹Kotschenreuther et al. IAEA v1. p.371 (1996).
²Kotschenreuther et al. Nucl. Fusion **57**, 64001 (2017).
³Chang et al., Phys. Plasmas **28**, 022501 (2021).
⁴Zhang and Mahajan Phys. Fluids B **4**, 1385 (1992).
⁵Hatch et al., Plasma Phys. Control. Fusion **60**, 084003 (2018).
⁶Ernst IAEA 2018 EX/2-2 also D. R. Ernst, Phys. Rev. Lett. **132**, 235102 (2024).

