DIII-D Wall Change Community Forum – Day 2

Tyler Abrams Andrea Garofalo Brian Wirth and the Wall Change WG

June 13, 2024

Logistics and Goals for Today

- Breakout sessions were not recorded, but PDFs are being made available on the website
- Goal today: evaluate level of consensus within/between BGs
- We do not necessarily need to converge on one set of capability gaps, alignment, & approach
 - Can potentially present multiple options to PAC in late July

Different DIII-D Wall Materials Allow Varying Levels of Progress Toward Physics Gap Closure (part 1)

	SiC	Tungsten	Tungsten Proxy (e.g., Mo, Fe, Ni, V)	Carbon ("Do Nothing")
Resolve compatibility of FPP relevant cores and materials	 Allows tailoring of pedestal/core 	 Challenging, but opportunity to demonstrate compatibility of all-W wall with AT using flexible toolsets high power ECH active wall conditioning But W-core radiation not in reactor relevant regime Minimal intrinsic low-Z, flexible detachment control using impurity seeding 	 Potential better match to core radiation profile expected in FPP, but not a reactor relevant material Sourcing mitigation strategies likely relevant to tungsten 	• None of these goals can be accomplished.

Different DIII-D Wall Materials Allow Varying Levels of Progress Toward Physics Gap Closure (part 2)

		SiC	Tungsten	Tungsten Proxy (e.g., Mo, Fe, Ni, V)	Carbon ("Do Nothing")
first wal	Optimize FPP first wall	Goals can be accomplished since	Tungsten may introduce more	 No testing of reactor 	or-relevant materials
	design for PMI	SiC considered reactor-relevant material		 Toroidal symmetriza enhancing predictiv far-SOL 	•

DIII-D PMI Program Is an Essential Component of the Community-Driven Strategic Plan for Fusion Energy

CPP Strategic Objective	CPP Strategic Elements involving DIII-D PMI Program	FESAC-LRP Elements involving DIII-D PMI Progr	
	Material Migration in a U.S. Confinement Experiment	"Plasma-facing component	
FST-SO-A: Demonstrate	Multiphysics/Multiscale Edge/SOL/Divertor Plasma & Materials Model Validation	integration and FPP-releve scenario development" (p	
Plasma-Facing Component	In-situ & Real-Time PMI Measurements	"Plasma-material interaction	
Solutions	High Heat Flux, He Gas Cooling, Engineered Materials Development, Advanced Manufacturing Technology	and material choices for exhaust solutions" (p31)	
FST-SO-D: Advance the	Test New Solid PFC Materials in Tokamaks		
Tokamak Physics Basis	Test New Wall Conditioning Techniques in Tokamaks		
	Leading Role Supporting Role		

ram

International Confinement Facilities Complement DIII-D's Role and Capabilities

Facility	Divertor Material	Main Chamber Material	Capabilities
DIII-D	$C \rightarrow W$, ?	$C \rightarrow SiC, W, ?$	Rapid change-out. Well diagnosed. Conditioning by powder dropping. Core scenario flexibility.
ASDEX-U	W	W	Boronized, divertor and main chamber manipulators. Minimal AT program, wall is far from plasma, divertor geometry limitations.
EAST	W	C → Mo	Actively cooled divertor. MAPES midplane station. Long pulse. Strong GA-ASIPP team.
JET-ILW	W	Be	Has operated with graphite PFCs. The current PFC configuration may be somewhat relevant to a C/W PFC configuration on DIII-D.
JT-60SA	· · · · · ·		Water-cooled divertor. Heat loads <15 MW/m ² . Superconducting machine. Similar core/edge integration challenge.
KSTAR	W ('23)	$C \rightarrow W \text{ coat-}$ ed tiles	DIII-D-like performance, similar core/edge integration challenges. Long pulse
NSTX-U	C → LM	С	Plans to explore viability of liquid metals. Complementary to solid PFC approach studied in DIII-D
SPARC	W-alloy	W	High B-field, high PFC fluxes.
WEST	W	W	Boronized. Operates with two actively cooled tungsten divertors. Long pulse. Limited diagnostic set, substantial O,C impurity issues.

International Confinement Facilities Complement DIII-D's Role and Capabilities

Facility	Divertor Material	Main Chamber Material	Capabilities		
DIII-D	$C \rightarrow W, 2$? $C \rightarrow SiC, W, ?$	Rapid change-out. Well diagnosed. Conditioning k dropping. Core scenario flexibility.	oy powder	
ASDEX-U	W			prs. Minimal AT y limitations.	
EAST	W	• Core sce	Long pulse.		
JET-ILW	W			configuration ration on DIII-D.	
JT-60SA	C→W		 This will lever the imminent increases in DIII-D's ECH capability 		
KSTAR	W ('23)	• Diagnos	on challenges.		
NSTX-U	C → LM	advance	ement of solid PFM solutions	entary to solid	
SPARC	W-alloy				
WEST	W	W	Boronized. Operates with two actively cooled tung Long pulse. Limited diagnostic set, substantial O,C	-	