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Plasma Facing Materials must tolerate extreme heat,
neutron and particle fluxes

Baldwin, Nishijima, Doerner, et. al, courtesy of = Typical materials considered for PFM include graphite, beryllium and
Center for Energy Research, UCSD, La Jolla, CA

PISCES.B: pure He plasma #rg:ten -- although this list has been modified by considerations at

= Tungsten alloys leading candidates as divertor structural materials
due to their excellent thermo-physical properties.

= However, critical issues need to be addressed:

* Creep strength
» Fracture toughness (DBTT)
* Microstructural stability (Recrystallization)
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Plasma facing materials are a grand challenge for fusion reactors

Zinkle and Snead, Annual Reviews 2014

An eye toward a fusion pilot plant
14.1 MeV neutron flux >1014 n/(cm?2:s)
First wall power load: 2 MW/m?

Divertor: 10-20 MW/m?
C. Bachmann et al., FED, 2015; G. Federici et al., FED 2014

For essentially all ITER components, current
materials systems will not survive the
anticipated DEMO (or a compact FPP) lifetime.

PFM requirements ultimately require
engineered forms of W with
mechanistically driven stability.

Steady state heat loads: Transient thermal loads:
up to 20 MWm=2in ITER up to 60 MJm-2
(lower loads in DEMQ) (disrupt., ELMs, VDEs)
« recrystallization thermal * cracks
« failure of joints |oads * melting

* dust formation

neutrons

Plasma loads:

* sputtering

* hydrogen retention
* helium induced

morphology

* up to 14 MeV
» defects
* transmutation

Linke et al., Matter Rad Ext, 2019



PMI Challenge has been well recognized

Research Needs for
Magnetic Fusion Energy Sciences

Report of the Research Needs Workshop (ReNeW)
Bethesda, Maryland — June 8-12, 2009
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Research Theme (3 of 5):
Taming the plasma-
material interface

FUSION ENERGY
SCIENCES WORKSHOP

Thrust to decode &
advance the science
and technology of
plasma-surface
interactions
Thrust to improve
power handling
Thrust to demonstrate .
Report on Science Challenges and Research
an integrated solution
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core plasma
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Report from Fall 2023 Materials roadmapping workshop
expected this summer



Safety & Waste considerations

Activation considerations are essential for worker/public safety,

maintainability, waste management, and public acceptance of fusion
energy

* For Class C waste qualification (after 5 e Similar safety criteria based on short-
MW/m2 neutron wall loading for 4 years) term activation and after-heat

unlimited 10% 1% .01% .001% .0001% .00001%

Top half of box: hard spectru
Bottom half of box: soft spectru

S. Piet, et al., Fusion Technology, Vol. 19, Jan. 1991, pp. 146-161; and E. T.
Cheng, “Concentration Limits of Natural Elements in Low Activation Materials”,
ICFRM-8, Sendai, Japan, October 1997, J. Nucl. Mat.

Based on T. Noda, et al., Journal of Nuclear Materials 155-157,
1988, 581.



W PMI roadmap: Current R&D to address W performance gaps
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Proposed W R&D, including complementary modeling & testing

Gaps that must be closed to move the material beyond TRL 3 (near-term R&D):
« Erosion, redeposition, material migration
» Understand effects of preferential sputtering, material transport in the machines
» Use linear plasma devices to study erosion under different exposure conditions / tokamak studies
to understand material transport within the machine
» Recrystallization: How do we stabilize the microstructure?
» Laboratory testing: High temperature UHV furnaces, e-beam facilities, microscopy with HT stages
 Integrated testing: Exposure specimens to H mode plasmas w/ ELMs
* Interfacial stability
» Microscopy: SEM / TEM during heating / ion irradiation
 Insufficient data for W materials with the relevant n-spectrum at relevant temperatures.
» Long-term community need for FPNS facility for fusion materials testing
« Effects of neutron-irradiation (topics that can be addressed with existing ion beam / fission facilities):
» Hydrogen isotope trapping / diffusion / permeation within damaged materials
» How does transmutation affect embrittlement at low doses?
* Need to assess thermal conductivity loss at high fluence n-damage
« Understanding the effects of the complex chemical environment
» Use “single effect” experiments to study effects of B, N, and other impurities on surface chemistry
» Develop interatomic potentials for models to address more complex chemical environment



Comparison of W alloys, CFC/graphite and SiC

Functional Relevant Material
Requirement Tungsten (Alloys) Graphite/CFC Silicon Carbide

Erosion (sputtering, evap.,
arcing, melt, dust, etc.),
Atomic physics (cooling)

Minimize impact
on plasma core

Exhaust heat

Thermal Conductivity

Minimize H/D/T
retention

H diffusivity/permeability,
trapping, co-deposition

Maximize He He diffusivity/permeability,

pumping trapping probability
Transparentfo Nuclear cross sections
neutrons

Sufficient lifetime Erosion, neutron damage

Low phys. sputtering, no
chem. sputtering, some
concern of leading
edae melting/droplets,
high core radiation

High, some
degradation under
iradiation, ODS-W¢

Implantation/diffusion
acceptable, saturates a
low dpa at low temp,
(high tfemp?). low
sputtering = low codep

Some nano-bubbles but
generally acceptable

High-Z, Acceptable for
thin coatings on FW

Low sputtering. n-
embritflement at low
temp, creep at high
temp. -> melt damage?

Moderate physt+chem
sputter (T-dependent).
Ablation at high temp.,
low core radiation,
dilution probably OK

High for unirradiated,
but substantial
degradation < 1 dpa

Codep-dominated,
likely unacceptable for
safety/TBR except
maybe at very high-T
and/or O baking

Can review literature,

Acceptable

Not as bulk materials.
Perhaps as thin film, but
high chem. erosion
unless T very high/low

Phys & chem. sputtering
somewhat lower (2-10x)
than carbon, needs
more study. Ablation at
high T., low core radia.

Moderate unirradiated,
some degradation at
high dpa, OK for FW

Codep-dominated,
needs more study

Low He permeability

Acceptable

Bulk material in areas of
~low heat flux, or thin
coating. Erosion better
than C, more study



Comparison of W alloys, CFC/graphite and SiC

Functional Relevant Material
Requirement Tungsten (Alloys) | Graphite/CFC Silicon Carbide
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Exhaust heat

Minimize H/D/T
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Solid Walls — W challenges and advantages

Code | Name! Key Advantages Key Challenges
w/ Tungsten/ o High melting temperature ® Recrystallization
AMW | AM Tungsten ® Resistant to sputtering e Limited fracture toughness and high DBTT
o Chemical compatibility with tritium o Severe embrittlement at low doses due to transmutation
o High thermal conductivity e Difficulty in producing crack-free AM components
WX Solution Stabilized | ® High melting temperature ® Reduction in thermal conductivity
Tungsten Alloys ® Resistant to sputtering e Additional solid transmutants
® Increased recrystallization temperatures e Preferential sputtering of alloying elements
e Enhanced radiation stability o Embrittlement at low doses due to transmutation
® Fine grains lead to improved mechanical performance
WP Particle Stabilized | @ High melting temperature o Reduced thermal conductivity
Tungsten Alloys ® Resistant to sputtering o Unknown effects due to transmutation of the solute
® Increased recrystallization temperatures o Preferential sputtering of alloying elements
e Enhanced radiation stability via interfacial sink effects | ® Embrittlement at low doses due to transmutation
e Fine grained microstructures lead to improved | ® Loss of precipitates under irradiation
mechanical performance
WHA Tungsten Heavy | @ Simple fabrication via liquid sintering, commercially | ® Relatively low melting temperature of the ductile phase
Composites available and cheaper than W o Void swelling of the ductile phase
o High fracture toughness and ductility at RT, readily | ® Neutron activation of Ni
machinable
e Potential PFC material if used with an armor material to
avoid sputtering of the ductile phase
W/W Tungsten- e Tungsten fibers are commercially available from | @ CVI process limits matrix thickness, which will be a
tungsten MMC different vendors in large quantities for relatively cheap challenge to industry-scale production of nuclear grade
o Tungsten fibers are ductile and might be ductile after components.
neutron irradiation e Joining parts (also a challenge to scale-up of components)

® Tungsten is the preferred first wall material due to
several reasons




Solid Walls — critical feasibility & performance issues for W

Code |Description w
1B-1 |Recrystallization under static thermal loading scenarios 3
1B-2 [Thermophysical properties and effects of thermal cycling 3

1B-3 |Mechanical properties including tensile response, fracture toughness, and
ductile-to-brittle transition temperature

1B-4 ([Transmutation induced chemical changes, irradiation defect microstructures, and
their implications for phase stability, recrystallization, and volumetric swelling

1B-5 [Net erosion (sputtering and He effects) and redeposition

1B-6 |Hydrogen isotope permeation and retention for D/T and mixed D/T+He plasma
conditions

1B-7 |Near net shape manufacturing and repeatability

1B-8 |Recrystallization under cyclic thermal loading with an evaluation of
thermal shock and thermal fatigue

1B-9 [Degradation under transient disruption thermal loading scenarios

1B-10 |Impact of neutron irradiation (defect populations and transmutation
products) on thermal and mechanical properties

1B-11 [Combined effects of neutron irradiation and high heat flux on defect
microstructures and overall phase stability and swelling

1B-12 [ Effects of plasma exposure on irradiation induced embrittlement

1B-13 [ Creep strength, time-to-rupture, and effects of neutron irradiation

1B-14 | Oxidation behavior under fusion relevant accident scenarios

mTRL Ranking
[ PR [4 E




Motivation for Ultra High Temperature Ceramics (UHTCs)

e Lacking a perfect plasma facing material that can withstand the multiple operation
exposure extremes & materials design requirements

High Heat flux
* High thermal conductivity
Thermal stress

* PFC erosion

* Tritium retention

* He/H implantation (blister formation)
* Dust/debris release

UHTCs are a potential PFM solution
High melting points

stable microstructures

Minor radiation-induced swelling

Neutron irradiation induced property changes

* Thermal conductivity

* Mechanical properties

* Grain growth and cavity swelling

Plasma interactions and sputtering

* Plasma compatibility (low-Z preferred)

* Surface erosion and redeposition (high-Z
preferred)

Some evidence suggests very minor

changes in mechanical properties
after neutron irradiation
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Conductive Liquid metals: sparingly tested in present-day devices

* Liquid Li used in NSTX (divertor), EAST
(insertable limiter), FTU (limiter), LTX and LTX-
beta (limiter), COMPASS (divertor insert), - =l

HIDRA (limiter) and MAGNUM-PSI (target) Rt

40 45 50 55 60
* Liquid Sn PFCs have been tested in FTU Major Rad'“SBO[y‘I’:,‘q]F s
(limiter) and ASDEX-Upgrade (divertor) \
« Lead-Lithium is untested as a PFM, but is being e o i

considered by private companies

Langmuir probes

Molybdenum pipe

Mazzitelli NF 2019



Wall changeout discussion agenda — PMI/first wall/divertor

Breakout groups (5 scheduled, 3 materials-related & 2 plasma-related) will discuss (90
minutes) first wall changeout options/opportunities — Tyler Abrams will provide more specific
instructions

- | will co-lead the Fusion Materials Science & Technology breakout (with Greg Sinclair)

- Adam McLean and Jonathan Yu will co-lead Divertor/SOL breakout

- Florian Effenberg and Aritra De will co-lead

Martin Nieto-Perez Pennsylvania State University
Johns Hopkins University and (Joint) Pacific Northwest National Lab Fusion Materials Science & Technology Next generation candidate fusion materials systems: complex refractory alloys
Fusion Materials Science & Technology PMI and materials science considerations for tungsten plasma-facing components in DIlI-D

Fusien-Materials-Seience-& Fechnology BB

Robert Kolasinski Sandia National Laboratories

Zeke Unterberg  ORNL

A. Garofalo Core Physics/AT Scenarios Breakout
C. Holcomb (Room 15-019, Zoom Link)
A. McLean Divertor/SOL Breakout
J.Yu (Room 15-018, Zoom Link)
B. Wirth Fusion Materials & Technology Breakout
10:30AM | 07 G. Sinclair (Room 13-301, Zoom sI].?nk)
H. Wang Pedestal/Core-Edge Breakout
S. Zamperini (G34 CR Conf. Room, Zoom Link)
F. Effenberg Plasma-Materials Interactions Breakout
A.De (Room 13-530, Zoom Link)
12:30 PM Breakout Groups Adjourn

Fusion Materials Science & Technology Multi-species materials sputtering studies in IGNIS-2

Fusion Materials Science & Technology Limitations of tungsten as a HHF material and where we could go next




