### **DIII-D PIT Strategic Planning Meeting**

Presented by J. Coburn on behalf of Plasma-Material Interactions topical group

September 14<sup>th</sup>, 2023







**Sanula** Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, **National** a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



- Long range goal: promote testing of a wide variety of plasma-facing material (PFM) candidates under FPP-relevant conditions
  - Looking more towards complex material solutions and mixed material environments
  - Down-selection of materials with improved PMI and thermo-mechanical properties:
    - Erosion resistance, heat flux handling, recrystallization, thermal shock, recycling, fuzz, ...
- Why DIII-D? Why now?
  - DIII-D combined high heat and particle fluxes in tokamak environment, along with multiple material exposure options (DiMES, MiMES, wall tiles)
    - DIII-D is currently the best US option for comprehensive materials testing
  - Aligns with DIII-D Five-Year Plan and various community reports (APS-CPP, FESAC 2020, NASEM) that explicitly call for testing novel solid PFC candidates
  - Presence of carbon limits some scope (retention) but not majority of near-term testing needs
- Impact:
  - Viable options for a new generation of divertor and blanket materials for FPP development
  - Vital stepping stone for full-component testing called for in DIII-D 5YP
  - "Fusion materials and technology... set the timescale on which any FPP could be successful" CPP



#### Issues & limitations of PMI experiments in past campaigns

#### • Historically been limited by run time guidance

- Team members do their best to augment this limitation through combining proposals, piggyback time, and Director's Reserve applications
- Combined expts with little runtime severely limits the 'material evaluation' part of AME



- Necessary preparation time for first-of-a-kind materials (~months year)
  - It's difficult to convince researchers to spend 6 months manufacturing and preparing specialized samples if there's no guarantee of run time. Means that sample prep usually starts after lengthy ROF process → limits ability to perform expt at start of campaign



#### **Benefits of Thrust Status**

- More materials! More collaborators! More physics studies! More good science
  - **<u>The demand is there</u>**. If DIII-D allocates 5+ days for PMI, the fusion community has enough materials
  - Dedicated time to utilize full capabilities of DIII-D  $\rightarrow$  more in-depth physics studies
    - Heated DiMES for PMI response at elevated starting temperatures  $\rightarrow$  stepping stone for heated div. (5YP)
    - Multiple spectroscopy measurement techniques
    - Varied DiMES designs / sample geometries
- Alleviates load for writing individual MPs for short material exposure experiments
  - More time for sample prep and ability to slot in collaborator materials
- Opportunity to optimize exposure scenarios for similar experiments
  - First 1/2 1 day to build proper reusable references? H-mode w/ ELMs, low-power L-mode, etc.
  - Experiments of greater risk (impurities) can be combined and scheduled before a vent
- Important timing for testing 'beyond ITER' materials for FPP development
  - Nicely balances other PMI thrust that supports ITER R&D needs
  - DIII-D is important 'piece of the puzzle' for qualifying materials in an integrated environment, in
    - \_\_\_\_\_ddition to single-effect or linear plasma studies



#### **Benefits of Thrust Status**

- More materials! More collaborators! More physics studies! More good science
  - **The demand is there**. If DIII-D allocates 5+ days for PMI, the fusion community has enough materials



W with TiO2 dispersoids, post exposure (SNL)

| GA            | Functionally graded materials, W-fiber composites, SiC/ceramics |       |
|---------------|-----------------------------------------------------------------|-------|
| National Labs | UHTCs, HEAs, Dispersoids, W alloys                              |       |
| Universities  | SiC/ceramics, 3D-printed W, UFG W                               |       |
| Industry      | 11+ companies: W Heavy Alloys, others?                          | A D A |

 $ZrB_2$ 

PMI to collaborators: "We have time for you and a general research plan. Bring your best materials to DIII-D and let's see what happens!"



Additively-manufactured W, post-exp (ORNL)





posure

ured W,

oosure ulich)

5

# Supplemental



### Divertor Material Evaluation System (DiMES) at DIII-D

- Pre-characterized samples are exposed in the lower divertor of DIII-D tokamak using DiMES
- Samples are typically inserted flush with the divertor tile surface
- Outer strike point (OSP) can be swept over samples or dwell on them
- Samples imaged by filtered CMOS and CCD cameras and a high-resolution MDS and UV spectrometers
- Plasma parameters measured by Divertor Thomson Scattering (DTS) and Langmuir Probes (LPs)
- Post exposure sample imaging & analyses





[1] D. Rudakov et al., Phys. Scr. (2014) T159 014030
<u>Posters</u>: H. Schamis et al, ID:178; D. Rudakov et al., ID:218;
L. Capelli et al., ID:189; D. Ennis et al., ID:194

### **Current Avenues of Fusion Mat. Development: Tungsten**



Rad damage in W-Ta alloy

High-entropy alloy compositions (FeNiCrCoMn)

8

#### **Current Avenues of Fusion Mat. Development**

#### Other (non-W) areas of research

- Self-passivating alloys (for oxidation resistance)
- High-entropy alloys (for neutron damage resistance)
- Additive manufacturing (for component fabrication)
- Ultra-High Temperature Ceramics (for mechanical properties)
- Functionally-graded materials (PMI + neutron resistance)

Common Theme:

 Researchers are looking more towards complex material solutions and mixed material environments, including interactions with other plasma species (He, low-Z coatings, N, etc.)



E. Lang, Nanomaterials 2022, 12, 2014

