

DIII-D Strategic Planning Meeting

Jim Pickles

Concept

Tokamak Energy

250+

World-class scientists, engineers and commercial specialists

\$250M raised to date

Financial backing from private capital and government grants

Goal

On track to bring commercial fusion to market in the 2030s

'Q' is the ratio of fusion energy to energy used to heat the plasma. Commercial viability for net electricity generation needs Q > 10

Our differentiator:

Compact, Low Cost Fusion

Spherical Tokamak with HTS offers energy producers a compact, highly efficient and low cost fusion solution.

Compact Spherical Tokamak

- Spherical tokamak is more efficient than conventional tokamaks for two reasons:
 - High "beta" = lower magnetic field needed to reach fusion conditions
 - High "bootstrap fraction" = reduced recirculated power required to drive plasma current
- Enables a smaller reactor for the same energy output
 - Approximately half the linear dimensions of a conventional Low Temperature Superconductor (LTS) tokamak with higher Q (~25)
 - lower CapEx & lower OpEx

High Temperature Superconducting (HTS) magnets

- HTS magnets enable stronger magnetic fields and smaller devices
 - Size of ITER & DEMO are set by use of LTS magnets
 - ST needs lower magnetic field in plasma for same performance as a conventional tokamak using HTS = less HTS - lower CapEx
- HTS also operates at 4x higher temperature than LTS reduces recirculated power used for cooling the magnets - lower OpEx

The right partner for fusion

We are the best positioned private company to bring commercial fusion to market

Founded in 2009 as a spin-out from the renowned Culham Centre for Fusion, we're the **only private company with 10 years' experience** designing, building and operating tokamak devices. We continue to set the pace for commercial fusion: delivering industry-leading results for fusion performance and component technologies.

The pathway to commercial fusion

We offer a credible pathway to bring fusion to market in the 2030s.

Technology gaps

Breeding Blankets and Fuel Cycles

Breeding Blankets

Naturally Enriched Liquid Lithium Breeding blankets

Advanced Radiation Shielding

Compact Spherical Tokamaks Require high-performance radiation shielding which could also be relevant for other neutronic fusion concepts

D. Fischer, Effect of neutron radiation damage on coated conductors for fusion magnets, 2019

Key enabling technology: Advanced Radiation Shielding

٠

٠

Work Package	Status
A. Identify Advanced Shield materials	Complete
B. Synthesize and characterize WB_x and HfH_x	In progress
C. Radiation Damage Modelling	In progress
D. Detailed TRL & MRL tactical roadmap	Complete
E. Experimentally validate Radiation Damage models	Ready to commence
F. Integrated concept design	Ready to commence
G. Demonstrate shield performance - prototype test (TRL6)	Ready to commence
H. Supply chain gear up	In progress

- We have undergone work on producing a roadmap to develop a pathway to industrial scale manufacturing of our shielding technologies
- Additionally, we are looking into novel composite materials which would not only have a shielding function, but also a structural function for regions where spatial constraints require both functions

© 2023 Tokamak Energy Private and Confidential

Shield testing in DIII-D (e.g. novel composites)?

Plasma Facing Components

Liquid lithium divertor in more detail

• If using lithium, then T removal is important. **Conclusion:** lithium must be flowing.

- Advantages: self-propelled flow
- **Disadvantages:** flow is not fast enough to transport heat down stream

E. Wakai, et. al., Nucl. Mater. Energy, 2016

- Advantages: potentially can withstand higher power loading than solids
- Disadvantages: pumps are technologically challenging and may require a lot of power

Divertorlets

- Advantages: continuous replenished surface and lower power than fast flowing
- **Disadvantages:** free surface needs to be flat, electrodes technologically challenging

Very interested in regenerative PFCs, especially different methods of Lithium flow in a plasma environment

Startup

Direct HFS X1 Launch and with Mirror-Polariser

Poloidal cross-section of ST40 with 2 options of EBW excitation: O-X-B with mirror-polariser (left) and X1 direct HFS launch (right). Fundamental EC resonance is indicated by the dashed red line.

- 2 options of HFS X1 launching are under development on ST40
- Direct HFS X1 launch is ideal for EBW plasma start-up based on X1-EBW mode conversion
- Direct X1 launch has a highest density limit but cannot provide central heating and CD
- Alternative option is based on LFS launch of O1 mode with subsequent O1-X1 MC on a mirrorpolariser (MP) at the central post
- The later scheme can provide central H&CD but accessibility is limited by O-mode cut-off
- Both steerable LFS launchers will allow beam focusing at MP for both frequencies 140/105 GHz and will support co- or counter- CD if RF beam reflected below or above midplane
- Design of HFS launchers and steerable LFS launchers is in progress in collaboration with ORNL under INFUSE grant

DIII-D synergy: EBW start-up experiments (Vladimir Shevchenko)

Materials

Materials Strategy Identify critical challenges, Collaborate, Validate in real environments

Specific materials needs

Materials need to be low-activation, and neutron-tolerant and must be capable of performing at high temperatures (with overlapping operational temperature windows)

Summary

Summary of areas of interest

Shielding

• Testing of novel shield materials (e.g. composites)

PFCs

• Regenerative PFCs, especially different methods of Lithium flow in a plasma environment

Startup

• Electron Bernstein Wave start-up experiments

Materials

• Materials testing in application (vacuum, plasma, magnet interactions)

Control, diagnostics & actuators

- Focus on developing pilot plant relevant control, diagnostics & actuators
- Developing compatible scenarios (e.g. with reduced diagnostics, and FPP relevant actuators)

End

