Introduction to the DIII-D Technology Group

by **Andrew Dvorak** w/ Tyler Abrams

Presented to FPP Technology Strategic Planning Meeting

September 13th-14th, 2023

First...

 Thank you very much for making time, we appreciate your involvement and value your time.

 We look forward to pushing the development of Fusion Technology.

Goal of the Strategic Planning Meeting

- Identify how DIII-D can best support technology research for Fusion Pilot Plant, FPP for the next two years.
- Discuss goals and high priority research efforts for next two years

Organization of Strategic Planning Meeting

Identify how DIII-D can support FPP needs

Discuss goals and research efforts

FPP Technology Strategic Planning Meeting - September 13-14, 2023

Remote Connection Information: Zoom Link

All times in Pacific Daylight Time (PDT)

		Wednesday	Morning - Overviews, Fusion Industry Needs		
Time	ID#	Name	Title		
10:00	00	R. Buttery	Opening Remarks		
10:05	01	T. Abrams	DIII-D Research Opportunity Forum (ROF) Process Summary		
10:10	02	A. Dvorak	Introduction to DIII-D Technology Group and Facility Capabilities		
10:30	03	D. Clark	Fuse Energy		
10:40	04	M. Nakamura	Helical Fusion		
10:50	05	B. Grierson	General Atomics		
11:00	06	J. Pickles	Tokamak Energy		
11:10	07	P. Carle	General Fusion I		
11:20	08	C. Riberio	General Fusion II		
11:30	09	T. Abrams	Summary of DIII-D Engagement with Fusion Industry		
11:40	10	All	Fusion Industry Needs Open Discussion/Q&A		
Noon			Lunch Break		
Wednesday Afternoon - Disruption Mitigation (DisMit), Heating and Current Drive (H&CD)					
1:00	11	D. Shiraki	DisMit Overview		
1:15	12	D. Shiraki	General Disruption Mitigation Thrust Idea		
1:45	15	All	DisMit Open Discussion/Q&A		
2:00	16	R. Pinsker	H&CD Overview		
2:15	17		Thrust Proposal: LHCD commissioning with plasma		
2:25	18		Thrust proposal: High-power helicon heating & current drive		
2:45	20	All	H&CD Open Discussion/Q&A		
3:00			Adjourn		

Discuss goals and research efforts

Thursday Morning - Plasma-Materials Interactions (PMI), Diagnostics and Actuators (D&A)							
21	D. Rudakov	PMI Overview					
22	S. Zamperini	Thrust Proposal: W In the Main Chamber					
23	F. Effenberg	Thrust Proposal: Advanced Wall Conditioning Techniques					
24	R. Kolasinski/J. Coburn	Thrust Proposal: Testing of Novel PFC Materials					
25	All	PMI Open Discussion/Q&A					
26	S. Hong	D&A Overview					
27	Y. Zhu	Thrust Proposal: Real-time diagnostics and feedback control in harsh environment					
28-	D&A Thrust	D&A Thrust Proposals					
29	Proposers	(5 minutes + 5 min discussion each)					
30	All	D&A Open Discussion/Q&A					
		Lunch Break					
Thursday Afternoon - New Ideas, Wrap-Up							
31	A. Dvorak/T. Abrams	New Technology Ideas Overview					
32	All	New Technology Ideas Open Discussion/Q&A					
33	A. Dvorak/T. Abrams	Summary, Wrap-Up, Next Steps					
		Adjourn					
	21 22 23 24 25 26 27 28- 29 30 31 32	21 D. Rudakov 22 S. Zamperini 23 F. Effenberg 24 R. Kolasinski/J. Coburn 25 All 26 S. Hong 27 Y. Zhu 28- D&A Thrust Proposers 30 30 All Thu 31 A. Dvorak/T. Abrams 32 All					

Contents

- Introduction of DIII-D
- Introduction of Technology Research Program, TRP
- Strengths of DIII-D program
- Overview of how to get involved in DIII-D
- Conclusion

DIII-D, an introduction

DIII-D National Fusion Facility

- Largest magnetic fusion user facility in US. Located in San Diego, CA
- Operations began in 1986. DIII-D team consists of ~130 institutions from all over the world to push science and technology development of Fusion Energy
- The programmatic goal is to develop the solutions for future fusion reactors. DIII-D can achieve this using the comprehensive set of highresolution diagnostics, expert operations workforce, and pioneer research capabilities. DIII-D capabilities are ever evolving and improving.

DIII-D National Fusion Facility

- DIII-D is a user facility of the U.S. Department of Energy, Office of Science.
 - Federally funded facility available for external use to advance scientific & technical knowledge
 - The facility is open to all interested potential users without regard to nationality or institutional affiliation.
 - Allocation of facility resources is determined by merit review of the proposed work.
 - User fees are not charged for non-proprietary work if the user intends to publish the research results in the open literature. Full cost recovery is required for proprietary work.
 - The facility provides resources sufficient for users to conduct work safely and efficiently.
 - The facility supports a formal user organization to represent the users and facilitate sharing of information, forming collaborations, and organizing research efforts among users.
 - The facility capability does not compete with an available private sector capability.

DIII-D's major strength is the flexibility of the program

- Although DIII-D has been around for many decades, it has stayed relevant because of the site's ability to change, adapt, and experiment in a collaborative environment.
- An example of this is the negative triangularity campaign.
 - The technical staff successfully reconfigured the tokamak's carbon tiles to experiment with negative triangularity
- DIII-D has the resources (scientists, engineers, machinists, welders, etc.) to rapidly innovate

Fusion Pilot Plant, FPP is a DOE program to construct a fusion energy plant that produces electricity

- FPP is a program to construct a fusion energy pilot plant
 - Goal #1: Producing net positive electricity
 → demonstrate feasibility
 - Goal #2: Demonstrate safe, stable product viability
- demonstrate commercial
- FPP is step toward commercialization of fusion technology industrialization
 - DIII-D, a federally funded site, is here as a stepping stone to de-risk FPP technologies
 - Our mission is to be available to Fusion Industry partners

DIII-D provides a reactor relevant test bed

 As well as using DIII-D for plasma physics studies, DIII-D will also be used as an experimental test bed to validate technology in a plasma interacting environment.

 The vision is to have clients come to DIII-D to validate and mature their technologies. As a federally funded User Site, our mission is to be available to partners to push FPP program.

Other services DIII-D can offer Fusion Industry

Work force development/apprenticeships

Experienced staff that can pass on knowledge

Technical reviews & expertise

- World leading experts, integration experience, and design experience.
- Experienced DIII-D personnel can help execute correctly.

Technology Research Program

What is the Technology Research Program?

TRP is a program that focuses & prioritizes FPP developments on DIII-D.

Goal:

- Develop crucial plasma-interacting technologies to accelerate the engineering maturity of the fusion pilot plant design space by demonstrating associated technologies, such as plasma actuators and control, plasma-material interactions, and sensors and diagnostics.
- Purpose: Maximized DIII-D utilization on the path towards FPP development

With the creation of the Technology Research Program, there is a shift in DIII-D programmatic mentality.

- Technology development has become one of the primary DIII-D missions.
 - Integration and testing of new technologies is expected to expand.
- What does this mean?
 - We will try new diagnostics, H&CD technologies, disruption mitigations, materials, control systems, etc. in a realistic environment to mature FPP technology.

Who is the Technology Research Program?

 Tyler Abrams – GA plasma physicist w/ ~10 years of experience at DIII-D, who knows inter working of DIII-D to deliver projects

- Having representatives of DIII-D and National Lab is an advantage.
 - We want to position the program to leverage DIII-D, the National Lab System, and the benefits (including access to INFUSE funding, access to DIII-D resources, Tech Centers, etc.)

DIII-D Technology Programs and their respective strengths – an overview

Materials

- Test bed for trying new materials
- Very useful near future tools → DIMES, WITS,
 Toroidal Limiters
 - Ability to test novel materials and components at various toroidal locations

DIMES IRTV DiMES TV Tile motion ~15 cm Coupon manipulator motion ~1.5 m Tiles supplied by users

Disruption Mitigation

- Robust, mechanically strong tokamak with unique survivability
- Testbed for alternative mitigation schemes

DIII-D Technology Programs and their respective strengths – an overview

Diagnostics

- Expose and validate diagnostics in DIII-D environment
 - Utilizing expertise for review(if desired) and/or integrate
- Future developments for a diagnostic testing platform

Heating and Current Drive

- ECH Test bed
 - DIII-D offers gyrotron sockets, transmission lines, and supporting components. This environment enables rapid iterations of designs at a low capital cost
- Novel H&CD methods
 - Helicon and Lower Hybrid Current Drive are very interesting technologies. Our DIII-D community can help FPP developers design and implement these technologies
 - DIII-D community is here to help deploy these technologies.

Curious to get involved? How does it work?

DIII-D is an available facility for FPP Fusion R&D.

- Partners (public and private) can integrate into our R&D ecosystem to quickly iterate technology and learn through actual experimentation
- Need not invest major resources instead use the DOE funded User Facility
 - Two routes for DIII-D collaboration:

	Nonproprietary Route	Proprietary Route
Cost:	No cost burden for external org	External org responsible for operational costs
Requirements:	 Must pass design review for DIII-D community to understand risks to tokamak Publication of research data. No requirement to share technological process. 	 Must pass design review for DIII-D community to understand risks to tokamak All data is kept proprietary.

How to get involved in DIII-D experiments?

- Step 1: Go to https://d3dfusion.org/become-a-user/
 - Here you will find contact information, instructions, and forms
- Step 2: Contact relevant group leaders (if you're unsure, contact Tyler or me (Andrew))
 - Burning Plasma Physics: George McKee
 - Edge and Boundary Physics: Morgan Shafer
 - Integrated Plasma Scenarios: Chris Holcomb
 - Plasma-Interacting Technology: Tyler Abrams and Andrew Dvorak
- Step 3: Get a GA host assigned → determine scope of work
- Step 4: Fill out forms from website

Conclusion

- DIII-D provides a reactor relevant plasma environment for technology development/validations
 - Mentality has shifted to dedicate program resources for furtherment of FPP technology
- The DOE milestone projects can use DIII-D as a steppingstone for technology development
- DIII-D has expertise and experience that should be leveraged.
- Private sector should utilize an operational US tokamak to further technology, train the next generations, and to retire FPP risks on our path to Fusion Energy.

Thank you for your time.

Any questions?

