Achievements of actively controlled divertor detachment compatible with sustained high confinement core in DIII-D & EAST

Liang Wang¹, H. Wang², A. M. Garofalo², X. Gong¹, H. Guo², D. Eldon², Q. Yuan¹, S. Ding¹, K. D. Li¹, K. Wu¹, J. C. Xu¹, J. B. Liu¹, L. Y. Meng¹, Y. M. Duan¹, B. Zhang¹, M. W. Chen¹, B. Cao¹, Z. S. Yang¹, F. Ding¹, G. S. Xu¹, J. P. Qian¹, J. Huang¹, A. Hyatt², D. Weisberg², J. McClenaghan², A. W. Leonard², J. Barr², M. Fenstermacher³, C. Lasnier³, J. G. Watkins⁴, M.W. Shafer⁵, R. J. Buttery², D. Humphreys², D. Thomas², B. J. Xiao¹, G.-N. Luo¹, J. Li¹, B. N. Wan¹

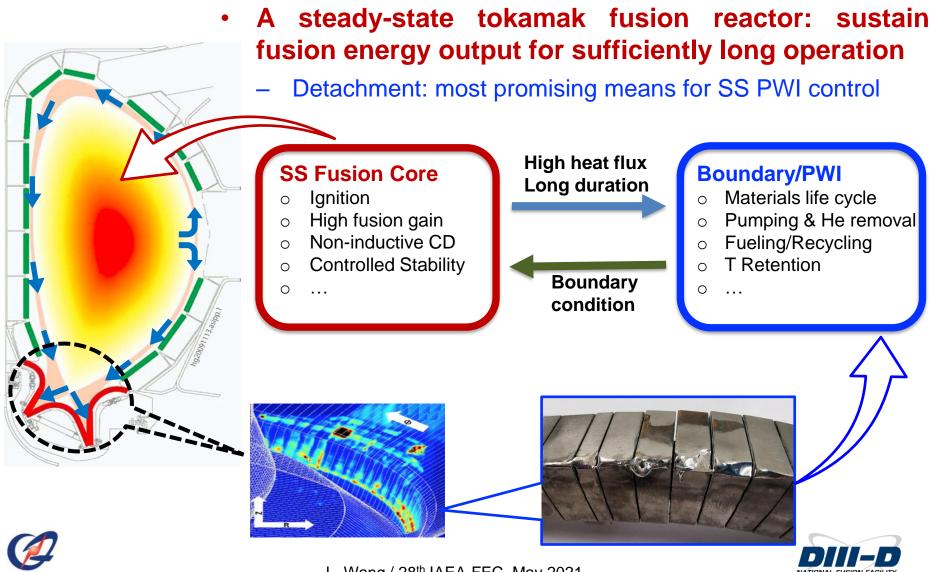
¹ASIPP, China ²GA, US ³LLNL, US ⁴Sandia National Laboratories, US ⁵ORNL, US

28th IAEA FEC, May 10-15, 2021 online

Outline

Motivation & Major Progresses

> Active detachment control compatible with core


- DIII-D: fully detached high- β_p plasmas
- EAST H-mode plasmas

Summary & Near-term Plans

Divertor heat load control & Core-Edge integration are critical issues for fusion reactors

Joint DIII-D/EAST research demonstrated active control of detachment compatible with improved core plasma

EAST

- o ITER-like W divertor
- o RF heating
- o Long pulse
- 0 ...

DIII-D

- High performance
- o Control & Phys.
- Full diagnostics
- 0 ...

High β_P scenario: a promising candidate for ITER's steady-state operation

> DIII-D: Integration of full detachment + ITB + ETB in high β_p scenario

- $T_{et,div} \le 5eV$, $H_{98} \sim 1.5$, $\beta_N \sim 3$, $\beta_p > 2$ and very low divertor particle flux
- Excellent core-edge-divertor integration [L. Wang et al., Nature Commun. 12, 1365 (2021)]

EAST: A series of active detach. controllers compatible with H-mode

- P_{rad} (2017), J_{sat} (2018), T_{e,div} (2019), T_{e,div}+P_{rad, X-point} (2019), T_{IR} (2019)
- $T_{e,div} \sim 5eV \& H_{98} > 1$ in standard H-mode, grassy ELMy H-mode, high β_P scenario

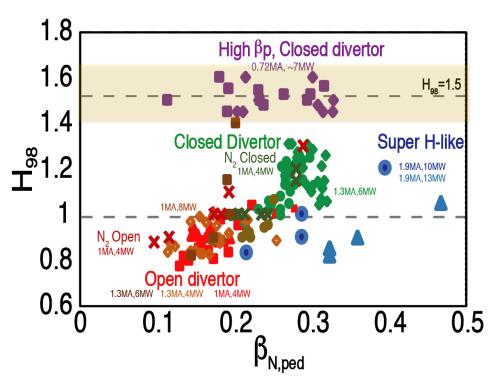
Both EAST & DIII-D successfully developed active detachment controllers compatible with high-H₉₈ core plasmas

EAST: 5 detachment/radiation controllers achieved with core H₉₈ > 1

Control methods	Control parameters
Total radiation [Wu18NF]	Prad.total
Div. particle flux ^[Wang19NF,Yuan20FED]	<u>j</u> sat
Div. electron temperature ^[Eldon21NME]	\mathcal{T}_{et}
Combination of div. electron temperature and X-point radiation ^[Xu20NF]	Tet + Prad, X-point
Div. target temperature ^[Chen20NF]	$\mathcal{T}_{t, peak}$

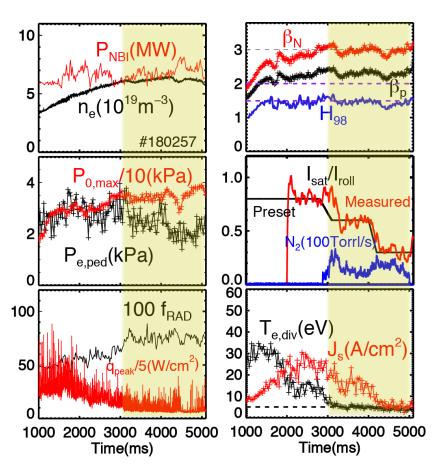
• DIII-D: DoD controller via J_{sat} achieved with core $H_{98} \sim 1.5$ in high β_p scenario

Control methods	Control parameters
Div. electron temperature [Eldon17NF]	T _{et, DivTS}
Div. radiation [Eldon17NF]	Tet + Prad, div
Div. particle flux ^[Eldon21NME]	Jsat


- Motivation & Major Progresses
- Active detachment control compatible with core
 - DIII-D: fully detached high- β_p plasmas
 - EAST H-mode plasmas
- Summary & Near-term Plans

High β_p is a promising candidate scenario for steady-state fusion core, facilitating core-edge-divertor integration

- High $\beta_p \rightarrow$ Strong Shafranov shift \rightarrow High confinement quality \rightarrow high fusion gain \rightarrow reduce reactor cost
 - Large-radius ITB + ETB → isolate hot core vs cold boundary
- High β_p : high confinement at lower pedestal Te \rightarrow benefit heat exhaust
 - Full detachment with T_{e,div} ≤ 5 eV across the entire target
 - ITB breaks core stiffness and improves core-edge integration
- Recent experiments & simulations support the possibility of high β_p scenario for ITER reaching Q=10 at low Ip ^[S. Ding, this Conf., EX/1-TH/1-3, Tue AM]



X. Gong, this conference, EX/1-TH/1-5, Tue AM A. Garofalo, AAPPS-DPP 2019; J. Qian, APS-DPP 2019; J. McClenaghan, IAEA-FEC 2018; J. Huang, EPS-DPP 2019

NATIONAL FUSION FACILITY SAN DIEGO

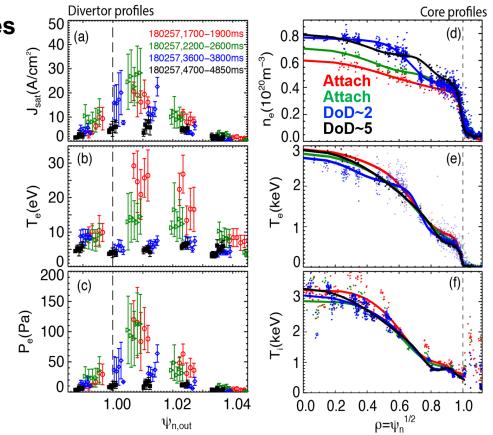
DIII-D: Excellent compatibility of detachment and high global performance has been achieved in N₂ seeded high β_p plasmas

- $\beta_{\rm N} \sim 3, \beta_{\rm p} \sim 2.4, H_{98} \sim 1.5, f_{\rm GW} > 0.9, f_{\rm NI} \sim 0.7$
- Degree of Detachment feedback control
 - Ādjust impurity puff rates^[D. Eldon, this conference, EX/P1-934]
 - DoD ~ I_{roll}/I_{sat} , follows the control preset
- Radiation dominates the power dissipation
 - $P_{rad,tot}/P_{nbi} \sim 0.75; P_{rad,core}/P_{nbi} \sim 0.3$
- IR peak heat flux from 2MW/m² to ~0.3MW/m²

H. Wang, 62nd APS-DPP, 2020; H. Wang, 29th ITPA-DSOL, 2020 L. Wang, H. Wang^{*}, S. Ding, A. Garofalo, X. Gong et al., Nature Commun. 12, 1365 (2021)

DIII-D: Full detachment and sustained large-radius ITB + ETB are simultaneously demonstrated in high β_p plasmas

T_{e,div} ≤ 5eV across entire target plates

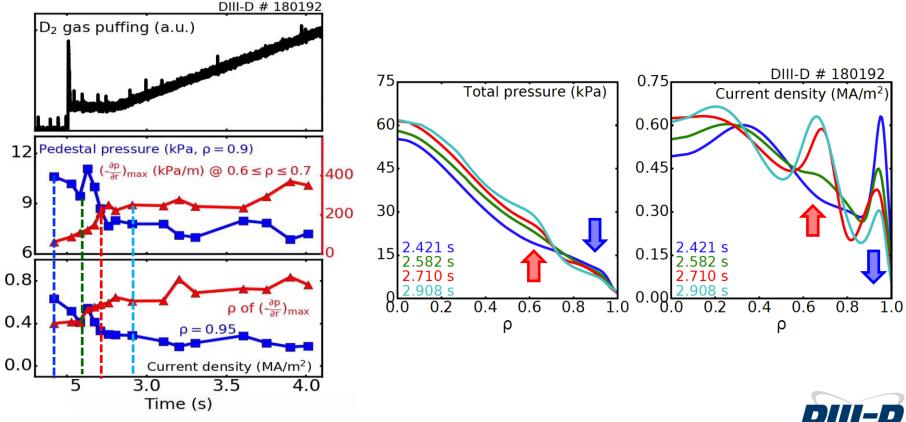

- > 90% divertor pressure loss
- DoD >5 with strong J_{sat} reduction
- High neutral pressure \rightarrow exhaust

ITB grows during detachment

- ITB at a large radius
- n_e and T_e ITB grows and expand

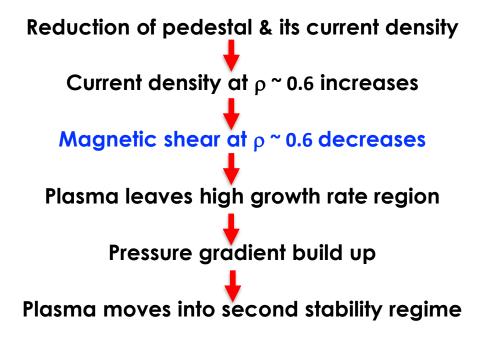
• P_{ped} reduces due to detachment

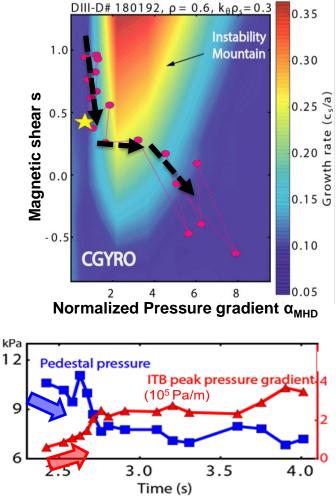
- T_e pedestal reduced by 50%
- n_e pedestal increases slightly


H. Wang, 62nd APS-DPP, 2020; H. Wang, 29th ITPA-DSOL, 2020 L. Wang, H. Wang^{*}, S. Ding, A. Garofalo, X. Gong et al., Nature Commun. 12, 1365 (2021)

DIII-D: Current density increases at large radius ($\rho = 0.6$ -0.7) due to reduced P_{ped} during detachment access

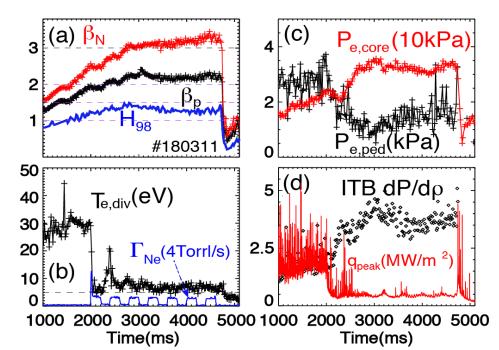
- D₂ fueling detachment lowers P_{ped} height, which promotes strong ITB
 - Further evidenced by neon seeding
- Edge current density decreases \rightarrow current density increases at large radius


- Decrease of magnetic shear around $\rho = 0.6-0.7$ triggers ITB



DIII-D: Formation of Strong Large-Radius (ρ =0.6-0.7) ITB due to Reduced P_{ped} Height, induced by divertor detachment

- Large radius ρ =0.6, k_{θ} ρ_s =0.3, EM


S. Ding, 10th US-PRC MFC Workshop, March 2021 L. Wang, H. Wang*, S. Ding, A. Garofalo, X. Gong et al., Nature Commun. 12, 1365 (2021)

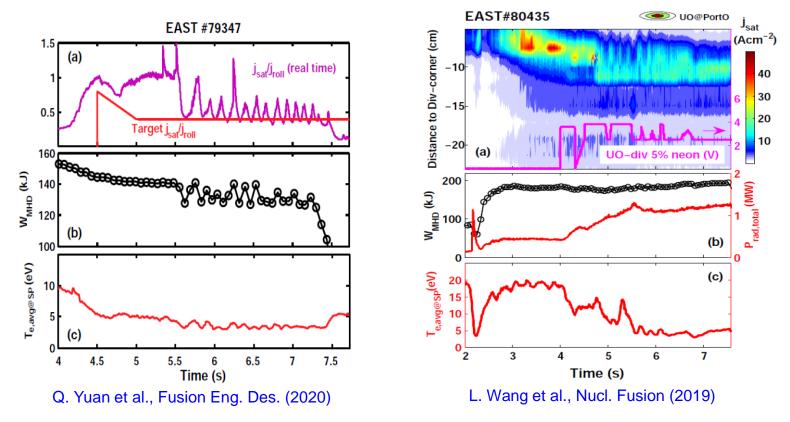
DIII-D: Neon seeding detachment leads to more effective P_{ped} reduction and strong large-radius ITB formation

•
$$\beta_{\rm N}$$
>3, $\beta_{\rm p}$ ~2.3, H₉₈~1.4, f_{GW}>1.1, q₉₅~7

- Neon reduces pedestal even more compared to N2 cases
 - Lower pedestal, higher ITB
- Partially detached w/ T_{e,div}= 5-10eV

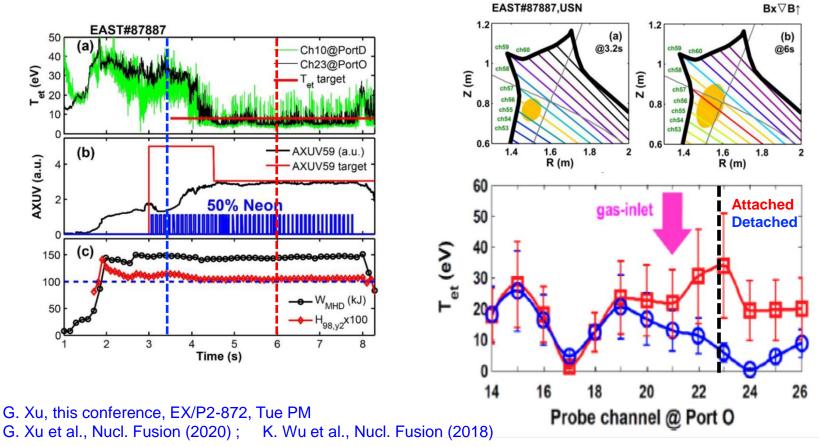
- Steady ELM suppression + divertor detachment + high performance core
 - Reproducible ELM suppression by neon seeding

L. Wang, H. Wang*, S. Ding, A. Garofalo, X. Gong et al., Nature Commun. 12, 1365 (2021)


- Motivation & Major Progresses
- Active detachment control compatible with core
 - DIII-D: fully detached high- β_p plasmas
 - EAST H-mode plasmas
- Summary & Near-term Plans

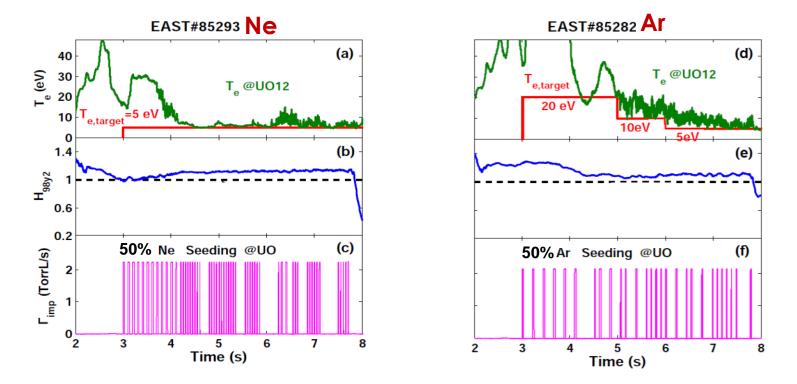
EAST: Achieved feedback control on degree of detachment (DoD) via j_{sat} in standard H-mode

- The feedback was achieved with two separate means, T_{e,div} < 5eV
 - ①LFS D2 fueling using SMBI, ②Divertor neon seeding



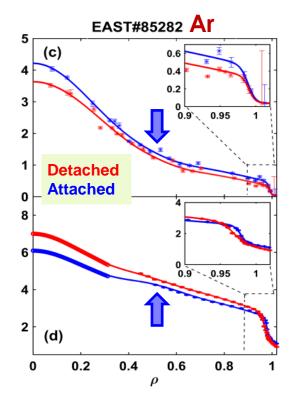
- Excellent compatibility with core plasma, $\Delta W_{MHD} < 10\%$
 - Neon seeding compatible with core \rightarrow no confinement loss

EAST: Achieved feedback detachment control via T_{e,div} + P_{rad} in grassy ELMy H-mode


- A new combined control module using Div.-LP T_{e,div} & X-point radiation
 - Divertor target Te near strike point maintained at 5-8 eV
 - H₉₈ >1 & plasma stored energy remains constant

EAST: Achieved feedback control of H-mode detachment via Divertor-Te

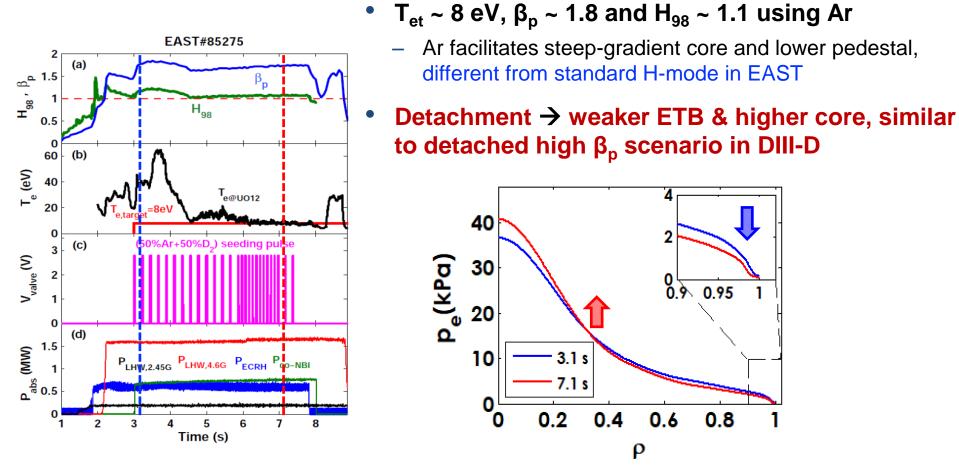

- T_{e,div} control is important for sputtering reduction
- For $T_{e,div}$ =5eV, neon is more compatible with core plasma, $H_{98} \sim 1.1$
- Argon seeded detachment induces slight confinement loss



D. Eldon, this conference, EX/P1-934, Tue AM
D. Eldon et al., Nucl. Mater. Energy (2021); D. Eldon, 24th PSI Conference, 2021

EAST: Ne improves confinement facilitating steep-gradient core while Ar degrades core T_e in standard H-mode

- T_{e,div} control is important for sputtering reduction
- For $T_{e,div}$ =5eV, neon is more compatible with core plasma, $H_{98} \sim 1.1$
- Argon seeded detachment induces slight confinement loss



K. D. Li et al., Nucl. Fusion (2021, in press) D. Eldon, this conference, EX/P1-934, Tue AM

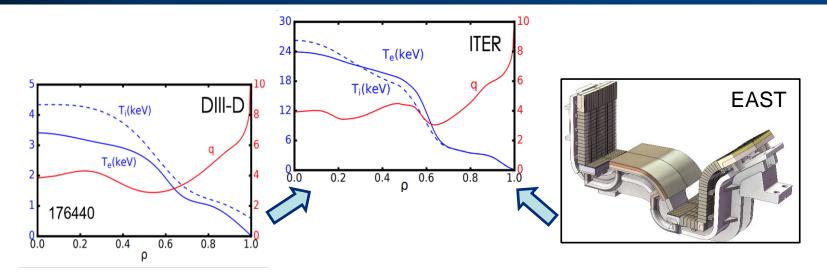
EAST: Active detachment control is used to improve core-edge integration in high β_p scenario

 β_P ~2.5, β_N~2.0, H₉₈ >1.2 and q₉₅~6.7 achieved using neon seeding with more heating power ^[X. Gong, this conference, EX/1-TH/1-5, Tue AM]

Motivation & Major Progresses

> Active detachment control compatible with core

- DIII-D: fully detached high- β_p plasmas
- EAST H-mode plasmas
- Summary & Near-term Plans


Joint DIII-D/EAST research demonstrated active control of detachment compatible with improved core plasma

A series of detachment control techniques for core-edge integration

- DIII-D&EAST: divertor J_{sat}, T_{e,div}, P_{rad}
- EAST: divertor T_{IR}, T_{e,div}+ P_{rad, x-point}
- DIII-D: Excellent integration of full divertor detachment with high β_p high confinement core, benefits from large-radius ITB + ETB
 - $H_{98} \sim 1.5$, $T_{e,div} \leq 5eV$ across the entire target plates
 - The synergy btw. ITB+ETB improves core-edge integration
- EAST: Partial detachment & improved core confinement in standard H-mode, grassy ELMy H-mode, high β_P scenario
 - $H_{98} > 1$, $T_{e, div} \sim 5 \text{ eV}$ around the strike point
 - Neon seeding is more compatible with core plasma, at present

Near-term Plans \rightarrow In support of ITER & CFETR

- DIII-D: Detached high-β_p plasmas with q₉₅ < 7 & G>0.2
 - Full detachment + ITB + ETB + ELM suppression
 - More ITER-like single null shape

EAST: Stable H-mode detachment control > 100s

- New lower W divertor for enhanced heat and particle exhaust
- Provide PWI solution for H-mode ≥ 400s

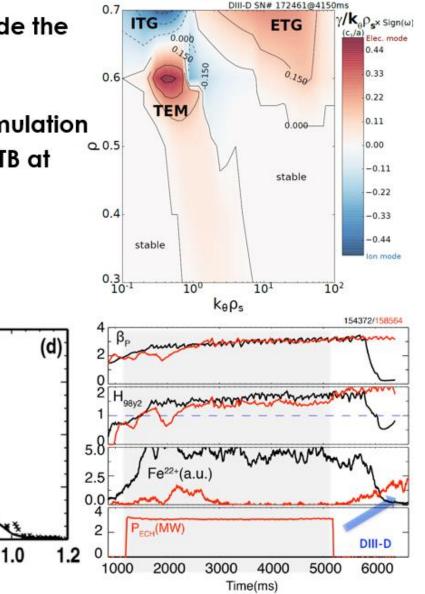
Thank you for your attention!

Group photo in EAST control room

ASIPP

Group photo in DIII-D control room

Backup slides


Less Peaked Impurity Profile is Observed in High β_P Plasma Without ECH

- A stationary, flat carbon density profile inside the ITB
- NEO predicts peaked impurity profiles
- Experiments show no metal impurity accumulation
- GK simulation shows TEM dominant inside ITB at lower q₉₅
 - Working hypothesis: Impurity control by selfgenerated TEM
- ECH can further help control impurity

6

0.0

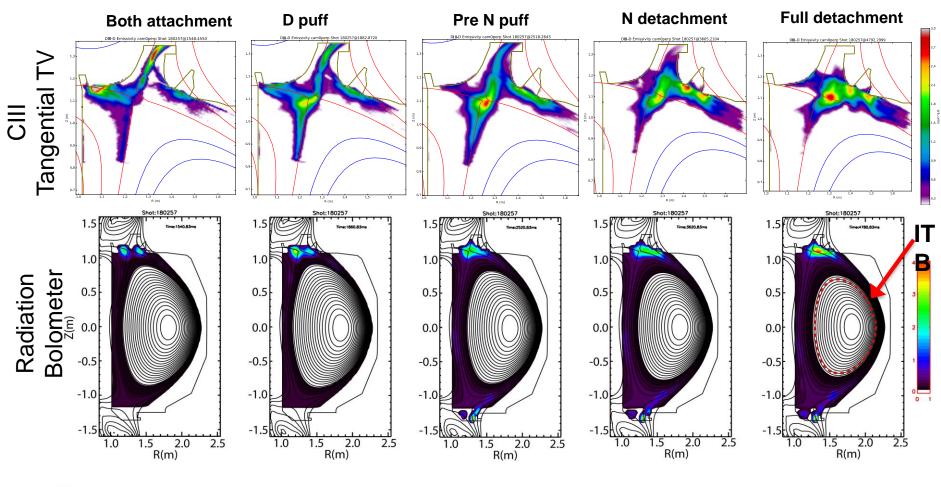
0.2

Garofalo, PPCF 2018 Ding, NF 2020 Qian, APS invited 2019

28th IAEA Fusion Energy Conference, May 10-15, 2021, Remote conference

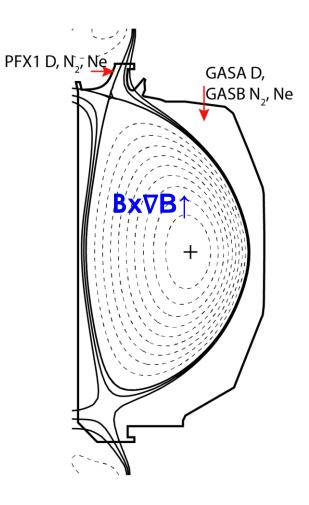
0.8

Carbon Density


0.6

n_z (10¹⁸m⁻³)

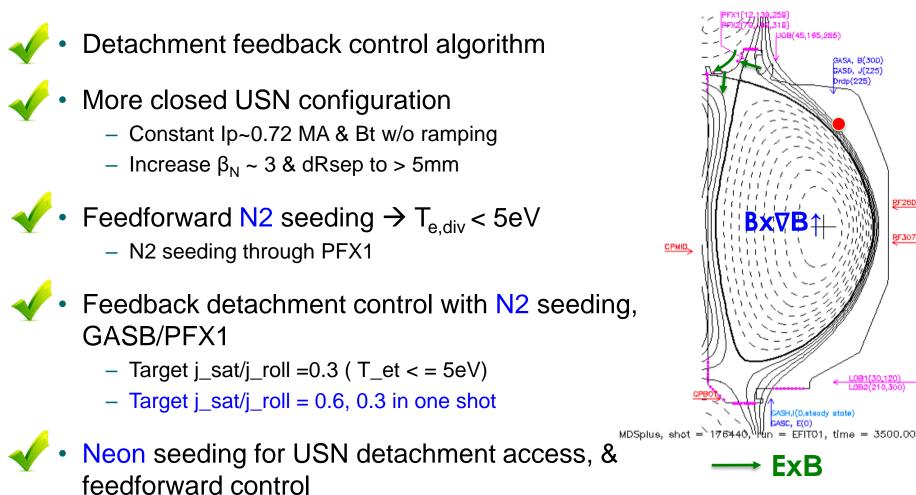
NEO


04

2D images show the peak radiation near X-point during detachment

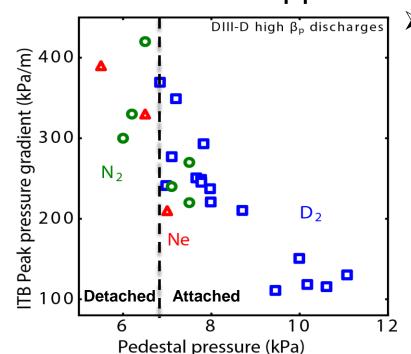
DIII-D experiment was performed under favorable B_T to study the compatibility of high performance core and divertor detachment

- > Upwardly Biased Quasi-Double Null with dRsep ~+7mm > $2\lambda_q$ > Ip~0.72MA
- ➢ Ion B-gradB drift towards divertor → favorable B_T
 ➢ Beneficial for full detachment
- > Impurity: Nitrogen, Neon; from divertor or main-chamber
- > NBI only, No ECH
- Several actively feedback controls
 - ✓ $\beta_{\rm N}$ feedback control → adjust the P_{NBI}
 - ✓ n_{eped} feedback control →D gas puffing


Diagnostics:

- Divertor: Langmuir probes, Bolometer, IR camera, pressure gauge, Tangential TV, Filterscope, …
- ➢ Core: TS, CER, SPRED, VB, …

Latest experimental progress in USN (September, 2019)

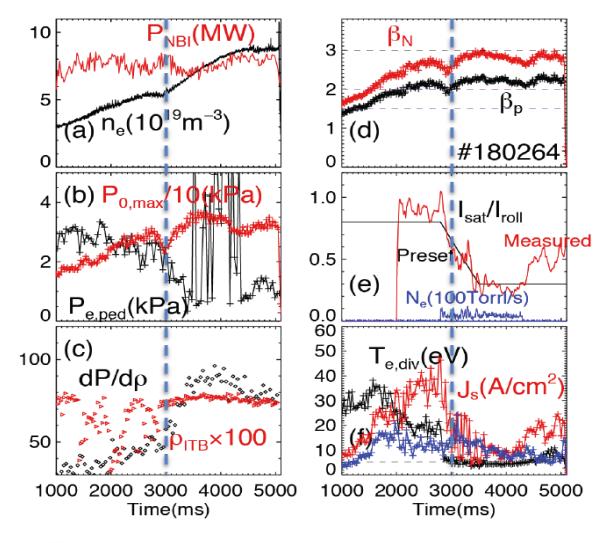


FF26D

RF307

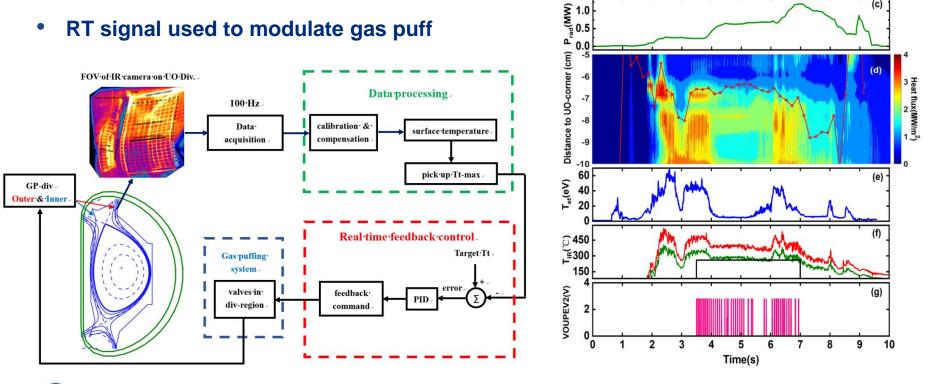
Special Core-edge integration in high β_p plasmas: synergy between ITB and ETB

• Both impurity and D₂ fueling show the synergy between ITB and ETB


ITB VP v.s. Pedestal top pressure DIII-D high β_o discharges > Extra bonus for core-edge integration

- Weaker ETB → benefits small ELMs → less intermittent events
- Strong ITB \rightarrow high confinement \rightarrow reduced P_{heat} for feedback control
- High β_p → wide pedestal → larger space between radiation cooling and pedestal top

D2+Neon puff, feedback control



EAST demonstrated IR surface temperature control for detachment

- IR surface temp. more directly addresses hardware limit
- Requires real-time processing of IR camera data by PCS

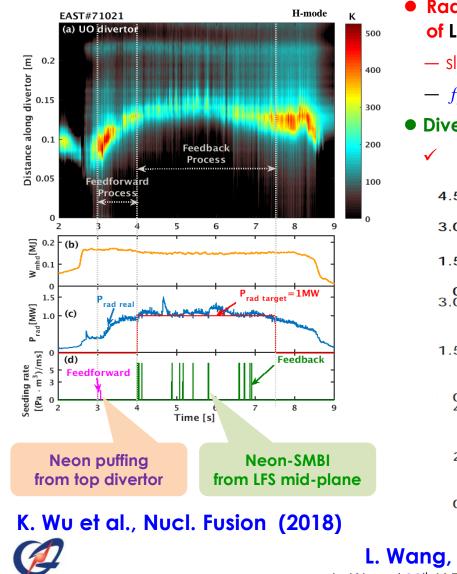
M. W. Chen et al., Nucl. Fusion (2020)

EAST #93411 USN B×VB1

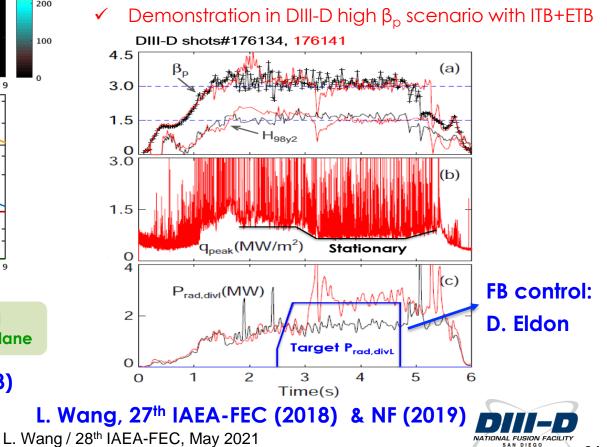
PLHW,4.6GHz

PECR

(²⁰⁰ (²⁰⁰ (¹)⁰

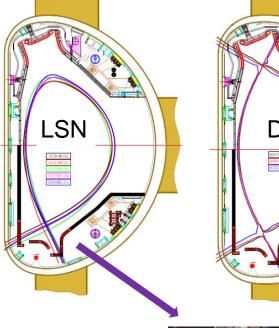

2.0 1.5 1.0 0.5 0.0

> DIII-D NATIONAL FUSION FACILITY SAN DIEGO

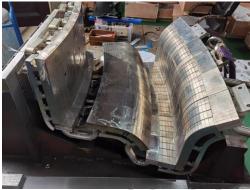

(b)

P_{NBI source}/3

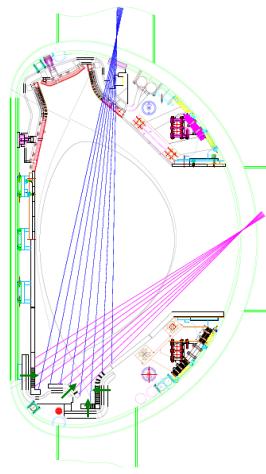
Active feedback control of P_{rad} to reduce heat flux


- Radiation power was actively controlled by feedback of LFS neon-SMBI seeding.
 - slight loss of plasma stored energy: 7 11%
 - $-f_{rad}$ extended to 41% in 2018.
- Divertor seeding exhibits much better in ctd. Expts

Bottom divertor upgrade ($C \rightarrow W$, finished)


Mission

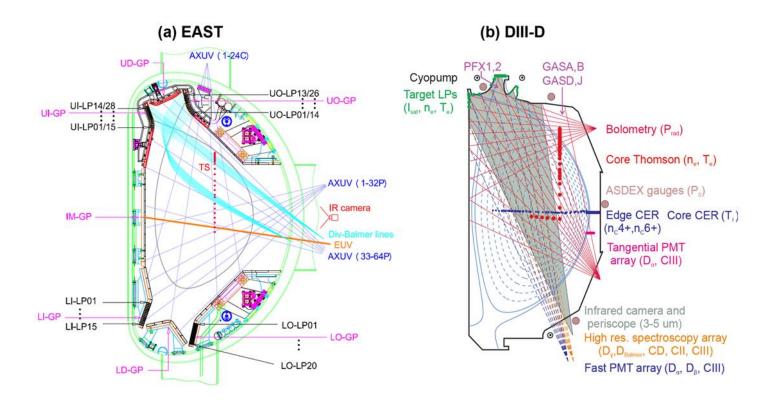
- H-mode ≥ 400s; 10 MW*100s
- Divertor & PWI control Physics
- \rightarrow Core-edge integration for ITER/CFETR
- W/Cu divertor with water-cooling
 - Monoblock in the strike point region (10MW/m²)
 - Flat-type structure for the dome plates (5MW/m²)
- Enhanced particle exhaust capability
- Closed outer divertor and open inner divertor for balanced detachment
- Facilitate both LSN and DN, flexible strike point
- A new divertor coil for X-divertor operation
- Plasma configuration with δ_{L} =0.4-0.6
- SMBI for impurity seeding feedback control



Upgrade of div.-diagnostics & gas puff systems

- Div-gas puff locations
 - Normal fast valves
 - New div-SMBI

ASIPP


Impurity, Fueling

- 1st Priority: safety & operation oriented
- 2nd Priority: physics oriented

Categories	Div-diagnostics	Plasma parameters
leat & Particle Fluxes	IR camera	Heat Flux, T _{target}
	Divertor probes	ne/Te/Particle & Heat fluxes/3D
	Thermal Couplers	Temperature
	Neutral pressure	Neutral pressure
Impurities	Visible spectroscopy	Visible spectroscopy
	Bolometer	Absolute measurements of total radiation losses
	EUV/VUV	High-Z impurity emission
	Divertor LIBS/LIAS	Retention & wall analysis
Phys. & PMI	Reflectometry	ne profile & turbulence
	Edge Current Actuator	SOL current filaments

Joint DIII-D/EAST research on core-edge-divertor integration

- EAST: ITER-like tungsten divertor for long pulse operation, RF heating, FB
- DIII-D: High performance plasma, bottom open & top closed divertors

