Doubling the Efficiency of Off-Axis Current Drive Using Reactor-relevant 'Top Launch ECCD' on the DIII-D Tokamak

by <u>Xi Chen</u>¹, C.C. Petty¹, J.M. Lohr¹, R. Prater¹, M. Cengher¹, M.E. Austin², Y. Gorelov¹, C. Holcomb³, L. Lao¹, J.M. Park⁴, D. Ponce¹, R.I. Pinsker¹, D. Su¹, B. Victor³, L. Zeng⁵

¹General Atomics ²University of Texas Austin ³Lawrence Livermore National Laboratory ⁴Oak Ridge National Laboratory ⁵University of California Los Angeles

Presented at the – 28th IAEA Fusion Energy Conference Virtual Event

May 10 - 15, 2021

Steady-State Advanced Tokamak (AT) Operation Requires Efficient Off-Axis Current Drive

- Off-axis current drive is needed to achieve the broad "AT" current profile favorable for stability and transport
 - High CD efficiency (ξ_{CD}) is needed for high fusion gain \rightarrow Q = P_{fus}/P_{aux} ~ ξ_{CD}
- Efficient methods of off-axis current drive need to be demonstrated in ongoing fusion experiments
 - Top launch ECCD is one of the reactorrelevant techniques being developed on DIII-D to efficiently drive current at the right location

Doubling of Off-axis ECCD Achieved on DIII-D via Reactor-relevant 'Top Launch ECCD' Approach

- New top launch ECCD system is installed on DIII-D to allow experimental validation
- Experiments tested main tenets of top launch ECCD
 - Geometry allows selective wave interaction with high V₁₁ electrons having high CD efficiency
 - Long absorption path compensates for inherently weak damping at high V₁₁

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

Top Launch ECCD with a Large Doppler Shift Ensures Strong Damping on Tail Electrons Leading to Higher ECCD

>Strongly absorbed for Te>1 keV

Top Launch ECCD Differs From TCV Top Launch ECH

- Important high density heating experiments have been done on TCV tokamak using top launch ECH¹
 - Launch EC wave with nearly zero toroidal steering
 - Use X3 to heat high density (> X2 cutoff) plasmas
 - Current drive not studied

Third-harmonic, top-launch, ECRH experiments on TCV tokamak

Xi Chen/IAEA/May 2021

Fixed-injection Prototype System Installed on DIII-D to Evaluate and Characterize Top Launch ECCD Approach

- New top launcher can be switched into existing waveguide
 - Dedicated gyrotron is not needed
 - 2nd harmonic X-mode damping
 - 117.5 or 110 GHz gyrotron can be used

Xi Chen/IAEA/May 2021

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

EC Power Deposition Profile Measured by Modulating Gyrotron Power and Observing T_e Oscillations

 EC source and T_e response are related through Fourier-transformed energy conservation equation. In high frequency limit,

$$\tilde{S}_{ECH} = \frac{3\pi}{4} \omega_M n_e \tilde{T}_e$$

- T_e response measured by Electron Cyclotron Emission (ECE) with high spatial and temporal resolution
- Experiments utilized various gyrotron modulation frequencies (ω_M)

Measured Power Deposition of Top Launch ECCD Generally Agrees with TORAY and CQL3D Predictions

- Ray tracing code TORAY models the Gaussian EC beam using a number of rays
- Quasi-linear Fokker-Planck CQL3D code calculates bounce-averaged electron distribution function and velocity-space fluxes
- Good agreement found between experimental and theoretical locations of top launch EC absorption
- Measured EC power deposition profile is in better agreement with theory for higher modulation frequencies (weaker transport effects)

Broader Power Deposition Profile of Top Launch Confirms the Predicted Longer Absorption Zone

- Theory predicts a longer absorption path for top launch, a result of EC waves approaching the resonance more gradually than for conventional outside launch
- Along ray path, the FWHM of EC power deposition profile measured by ECE is ~3x longer for top launch than outside launch ECCD

Xi Chen/IAEA/May 2021

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

Top Launch ECCD Wave Interacts with Higher V₁₁ Electrons for Lower Magnetic Fields

- Magnetic field (B_t) is scanned with fixed-injection to move the cold resonance location closer to or further away from the EC trajectory
- With fixed-injection, varying the magnetic field alters the wave-electron interactions in velocity space
 - Lower B_t pushes resonance to higher V_{||} Cyclotron resonance $\omega - \omega_{ce}/\gamma = k_{\parallel}v_{\parallel}$ where $\omega_{ce} \propto B$
 - Wave-Electron interaction follows

Top Launch EC Absorption is Reduced When Wave Interacts with Too Few High V_{\parallel} Electrons

- Measured absorption fraction decreases with lower B_t (higher V_{||}/V_t), in agreement with TORAY, when the damping on tail electrons is too weak
- Since higher energy electrons drive current more efficiently, there is a optimum (optimal B_t) for top launch ECCD:

High V_{\parallel}/V_{t} electrons + sufficient absorption \rightarrow High ECCD efficiency

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

Larger Change in MSE Pitch Angles Observed for Top Launch Than For Outside Launch ECCD

- Motional Stark effect (MSE) polarimetry measures vertical component of magnetic field (Bz) as a function of plasma radius
- Change in MSE signal compared to similar "no ECH" discharge shown

ECCD Profile Determined from Difference Between Oblique Launch and Radial Launch

• Non-inductive current drive determined using Ohm's law:

$$J_{\rm EC} = J_{\rm NI}(\rm ECCD) - J_{\rm NI}(\rm ECH)$$

• Two analysis methods used:

(A) determining J_{\parallel} and E_{\parallel} from equilibrium reconstruction with MSE data >narrow ECCD profile measured by using $\cos^2(k\psi)$ term in current reconstruction¹

B determining J_{\parallel} and E_{\parallel} directly from MSE data

 \blacktriangleright direct application of Ampere's and Faraday's laws to B_z profile²

٠

¹ L.L. Lao, et al., Proc. 14th Top. Conf. on Radiofrequency Power in Plasmas (2001) p 310 ² C.C. Petty, et al., PPCF **47** (2005) 1077

Xi Chen/IAEA/May 2021

Measured Off-axis Current Profile via Top Launch ECCD is Generally Consistent with Theoretical Prediction

Direct MSE analysis method

Integrated ECCD Magnitude in Good Agreement with Theory

For Top Launch, Highest ECCD Predicted for Optimal Tail Electron Absorption

- TORAY modeling of typical DIII-D 'AT' plasma predicts highest ECCD with absorption < 100 %

Highest ECCD via Top Launch Obtained for Bt Optimized for Sufficient Damping on Tail Electrons

ELMing H-mode plasma $<I_p >= 0.6 \text{ MA}, <T_e(0) > = 2.3 \text{ keV}, <n_e >= 1.5 \times 10^{19} \text{ m}^{-3}$ 110 GHz Gyrotron

Greatly Enhanced ECCD at Mid-Radii Observed via Top Launch ECCD Compared to Outside Co-ECCD Launch

Loop voltage analysis for MSE EFITs with local $\cos^2(k\psi)$ representation

Direct MSE Analysis Confirms ECCD is More than Double for Top Launch, Consistent with TORAY and CQL3D

ECCD (kA/MW)	Top launch	LFS co- ECCD
Measured	70	25
TORAY	63	27
CQL3D	68	31

117.5 GHz **Gyrotron**

EC Wave via Top Launch Interacts with Higher V₁₁ Electrons, Farther From Trapping Boundary

RF flux contour RF flux contour Top launch Outside Outside launch **co-ECCD** ECCD 3 3 ⊈/Vt ⊈/Vt Тор launch #179169 #17917 0 0 2 3 2 0 0 3 4 V_{\parallel}/V_t V_{\parallel}/V_t

CQL3D calculations at peak current drive

EC Wave via Top Launch Interacts with Higher V₁₁ Electrons, Further Away from Trapping Boundary

CQL3D calculations at peak current drive

Outline

- What's top launch ECCD?
- Longer absorption zone with top launch ECCD
- Strong damping on high $v_{||}$ electrons
- Significantly higher off-axis ECCD measured on DIII-D
- Top launch ECCD for reactors

Two New Top Launch Lines Planned in DIII-D to Advance Towards High- β AT Scenario Physics Goals

- Most DEMO design studies (e.g. Aries-AT, ACT1, CAT-DEMO) operate at β_N=4-6, q₉₅=4-6
- Traditional approach with outside launch 110 GHz gyrotrons predicted to require 6+ MW for DIII-D to reach target range of DEMO designs¹

¹ J.M. Park, et al., POP 25 (2018) 012506

Two New Top Launch Lines Planned in DIII-D to Advance Towards High- β AT Scenario Physics Goals

- Most DEMO design studies (e.g. Aries-AT, ACT1, CAT-DEMO) operate at β_N=4-6, q₉₅=4-6
- Traditional approach with outside launch 110 GHz gyrotrons predicted to require 6+ MW for DIII-D to reach target range of DEMO designs¹
- Instead, apply the same power using ~2x more efficient top launch, broader *j*, higher β_N, lower q₉₅ can be accessed
 Nearly the same performance with 3 MW TOP as 6 MW OUTSIDE
 >3 MW TOP 117.5 GHz + 3 MW OUTSIDE
 110 GHz would be a reasonable alternative to 9 MW OUTSIDE

• Two new top launch installations planned: first in FY22 campaigns

¹ J.M. Park, et al., POP 25 (2018) 012506

Predictions for FNSF-AT, DEMO, CFETR Suggest Substantial Improvement in Efficiency via Top Launch ECCD

- Studies of many tokamak reactors show current drive around ρ ~ 0.5-0.7 is required for steady-state AT regime
- Modeling for FNSF-AT shows > 50% higher off-axis CD efficiency for top launch ECCD¹, similarly for DEMO²
- 35% improvement in ECCD efficiency at ρ~0.5 found in initial modeling for CFETR baseline scenario³

¹ R. Prater, et al, APS-DPP (2012) ² E. Poli, et al, NF 53 (2013) 013011 ³ Xi Chen, et al., EPJ Web of Conferences, 203, 01004 (2019)

Doubling of Off-axis ECCD Achieved on DIII-D via Reactor-relevant 'Top Launch ECCD' Approach

- New top launch ECCD system installed on DIII-D to test this high-ECCD-efficiency approach
- Experiments validated main tenets of top launch ECCD
 - Geometry allows selective wave interaction with high V $_{\rm II}$ electrons yielding high CD efficiency
 - Long absorption path compensates for inherently weak damping at high $\rm V_{11}$
 - Highest ECCD efficiency for optimal absorption on high V₁₁ tail electrons
- Simulations of FNSF-AT, DEMO and CFETR support top launch ECCD as an improved efficiency off-axis current drive technique for future reactors

