Role of Resonant Magnetic Field Penetration in ELM Suppression and Density Pump-out in DIII-D ITER-like Plasmas

by Qiming Hu¹

```
with

R. Nazikian<sup>1</sup>, B.A. Grierson<sup>1</sup>, N.C. Logan<sup>2</sup>,

J.K. Park<sup>1</sup>, C. Paz-Soldan<sup>3</sup>, and Q. Yu<sup>4</sup>
```

¹Princeton Plasma Physics Laboratory, NJ, USA
 ²Lawrence Livermore National Laboratory, CA, USA
 ³Columbia University, NY, USA
 ⁴Max-Plank-Institute of Plasma Physics, Garching, Germany

Presented at the 28th IAEA Fusion Energy Conference, Nice, France 2021 May 11, 2021

TH/2-1

Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC52-07NA27344

Resonant Magnetic Perturbations (RMPs) Are the Leading Strategy to Control ELMs in ITER

- DIII-D [1] and other tokamaks have achieved ELMs suppression by RMPs
- RMPs have been incorporated to control ELMs in ITER
- However, a quantitative understanding of the mechanism is required to predict and optimize the access conditions for ITER—RMP strength, q₉₅ windows etc

[1] T. E. Evans, et al., PRL 92, 235003 (2004);
 T. E. Evans, et al., NP 2, 419 (2006);
 T. E. Evans, et al., NF 48, 024002 (2008)

Nonlinear MHD Model Reproduces RMP ELM Suppression Conditions in DIII-D and Predicts ELM Suppression for ITER

- Demonstrates that pedestal top islands formation limits height and width of the pedestal to suppress ELM
- Reproduces narrow q₉₅ windows of ELM suppression by n=3 in DIII-D
- Predicts ELM suppression in ITER within its 3D coil capability (I_{max}=90 kAt)

Outline

- Introduction of nonlinear MHD model
- Role of magnetic island formation in ELM suppression
- Narrow q₉₅ windows of ELM suppression, why?
- Wide q₉₅ windows of ELM suppression, how?
- Summary

Introduction of nonlinear MHD model

We Use a Suite of Codes to Obtain Quantitative Predictions of Island Formation at the Top of the DIII-D and ITER Pedestal

Experimental parameters and boundary conditions are used

We Use a Suite of Codes to Obtain Quantitative Predictions of Island Formation at the Top of the DIII-D and ITER Pedestal

Experimental parameters and boundary conditions are used

TM1 nonlinearly calculates the penetration or screening of RMP

TM1 simulates the enhanced parallel transport across the islands

 \checkmark TM1 runs efficiently to be able to scan parameter space

Role of magnetic island formation in ELM suppression

What limits the access conditions for ELM suppression?

Analysis of DIII-D ITER-Similar-Shape (ISS) Plasmas With n=2 RMP Shows Bifurcation to ELM Suppressed State at High RMP Amplitude

ISS

- RMP amplitude varies slowly using I-coils
- Sudden transition seen to ELM suppression
- Correlated with measured plasma magnetic response [1, 2]

C. Paz-Soldan, et al., PRL **114**, 105001 (2015)
 R. Nazikian, et al., PRL **114**, 105002 (2015)

Before ELM Suppression, There is Strong Screening Everywhere Except Pedestal Foot — Produces Density Pump-out

- 11/2 island flattens density at pedestal foot, consistent with experiment
 - —Uses realistic experimental parameters (resistivity)
 - ---Enhanced parallel transport across the island results in density pump-out

Q. Hu, R. Nazikian, et al., NF 60, 076001 (2020)

Pedestal-top Field Penetration Further Decreases Pressure to Stabilize Peeling-Ballooning Modes

TM1: m/n=8/2 magnetic island forms at top of pedestal

- -Further decrease density and temperature
- Discrepancy in pedestal n_e gradient
- TM1: Strong screening between top and foot of pedestal preserves ETB [1]

Pedestal-top Field Penetration Further Decreases Pressure to Stabilize Peeling-Ballooning Modes

TM1: m/n=8/2 magnetic island forms at top of pedestal

- -Further decrease density and temperature
- —Discrepancy in pedestal *n*_e gradient
- TM1: Strong screening between top and foot of pedestal preserves ETB [1]
- TM1: Pressure reduction at island onset agrees with experiment
 - ---Well below EPED prediction
 - -ELITE shows stable to PBMs

[1] R. Nazikian, Q. Hu, et al., NF 61, 044001 (2021)

Scaling Law from TM1 Reproduces the Conditions for n=2 ELM Suppression in DIII-D Plasmas

Scaling of pedestal-top penetration threshold

Contour plot of penetration threshold (color)

 Lower n_e and rotation frequency are favorable for ELM suppression in DIII-D [1]

-Consistent with n=2 database

 $B_r/B_t = 3.5 \times 10^{-2} n_e^{0.7} |\omega_E + \omega_{*e}|^{0.6}$

 This scaling indicates lower penetration threshold in ITER [2] due to the expected low rotation frequency

C. Paz-Soldan, et al., NF **59**, 056012 (2019)
 Q. Hu, R. Nazikian, et al., NF **60**, 076001 (2020)

Why narrow q₉₅ windows of ELM suppression?

Determined by the location alignment between island and pedestal-top

Multiple Narrow q₉₅ Windows of ELM Suppression Seen in DIII-D During Plasma Current Ramp

- ELM suppression for q₉₅~10/3, 9/3
- Windows of ELM suppression Δq₉₅~0.1
- Partial suppression at q₉₅~11/3
- TM1 model can explain partial and full suppression

TM1 Reproduces the Experimental Pedestal Pressure Reduction Versus q₉₅ Using Measured Profiles and RMP Amplitude

 ELM suppression coincides with localization of narrow islands to the top of the pedestal

 $-P_{e,ped}$ drops $\geq 15\%$ during ELM suppression compared to ELMing

TM1 shows that ELM Suppression Threshold is Satisfied for m/n = 9/3, 10/3, Marginal for m/n=11/3, as Observed in Experiment

TM1: Contour plot of pressure reduction vs RMP coil

- q₉₅~3.2, 3.55, 3.85 and 4.15 determined by 9/3, 10/3, 11/3 and 12/3
- q_{95} width sensitive to RMP strength and distance~0.33 (1/n)

Q. Hu, R. Nazikian, et al., PRL **125**, 045001 (2020)

TM1 shows that ELM Suppression Threshold is Satisfied for m/n = 9/3, 10/3, Marginal for m/n=11/3, as Observed in Experiment

TM1: Contour plot of pressure reduction vs RMP coil

- q₉₅~3.2, 3.55, 3.85 and 4.15 determined by 9/3, 10/3, 11/3 and 12/3
- q₉₅ width sensitive to RMP strength and distance~0.33 (1/n)
- Consistent with DIII-D n=3 database in q₉₅ vs n_{e,ped} space

Q. Hu, R. Nazikian, et al., PRL **125**, 045001 (2020)

TM1 Prediction Shows Similar q_{95} Windows for ITER Q=10 Plasma and the Required RMP Strength is Within the Capability of ELM Control Coils

ITER Q=10 15MA equilibrium and RMP configuration [1] are used

 n=3 q₉₅ windows are predicted with RMP coil current less than half of the full capability (I_{max} = 90 kAt):

Threshold current is lower than VIOW prediction [2]

Narrower q₉₅ windows compared to DIII-D

[1] L. Li, Y. Q. Liu, et al, NF **59** 096038 (2019)
[2] T.E. Evans, et al, NF **53** 093029 (2013)

TM1 Prediction Shows Similar q₉₅ Windows for ITER Q=10 Plasma and the Required RMP Strength is Within the Capability of ELM Control Coils

• Challenge: ELM suppression with narrow q₉₅ windows does not provide effective operational flexibility for ITER

• How can we expand the q₉₅ windows of ELM suppression?

L. Li, Y. Q. Liu, et al, NF **59** 096038 (2019)
 T.E. Evans, et al, NF **53** 093029 (2013)

How to expand the narrow q₉₅ windows to enable operation flexibility?

Prediction from TM1: q₉₅ Windows will Expand if RMP Level Increases or Threshold for Penetration Decreases

- Raise the RMP amplitude
- Or lower the density to expand and merge q₉₅ windows
 - -Lower density or rotation

Experiments in DIII-D Observed Wider q₉₅ Window of ELM Suppression at Lower Density with 50% Pressure Reduction

Experiments in DIII-D Observed Wider q₉₅ Window of ELM Suppression at Lower Density with 50% Pressure Reduction

- However, very large pedestal pressure reduction (up to 50%) unacceptable for ITER
- Is it possible to expand q₉₅ windows but minimize confinement reduction?

TM1 Simulation Predicts Wide q₉₅ Windows of ELM Suppression with Less Pressure Reduction for n=4

Closer q₉₅ windows for n=4 RMPs

-More rational surface enhances field penetration

-Less pressure reduction (~20%)

• Wide q₉₅ ELM suppression windows by n=4 RMP in DIII-D and ITER

—Full capability of 3D coils (I_{max} = 90kAt) in ITER will enable wide q₉₅ ELM suppression

DIII-D and ITER can Explore ELM Suppression at Higher Toroidal Mode Number

- New DIII-D M-coils [1] will enable exploring ELM suppression at n=4, 5, 6
- ITER ELM control coils (9 coils each row) are able to run at n=4, 5

[1] D.B. Weisberg, et al., NF 59, 086060 (2019)

Summary: Nonlinear MHD Model Reproduces RMP ELM Suppression Conditions in DIII-D and Predicts ELM Suppression for ITER

 Demonstrates that pedestal top islands formation limit height and width of the pedestal to suppress ELM

-Explains dependence on rotation and density

- Reproduces narrow q₉₅ windows of ELM suppression at n=3 in DIII-D —Lowering density expand q₉₅ windows
- Predicts ELM suppression in ITER within its 3D coil capability (90kAt) —n=3 q₉₅ windows similar to DIII-D —wide n=4 q₉₅ windows

Q. Hu, R. Nazikian et al., NF **60**, 076001 (2020) Q. Hu, R. Nazikian et al., PRL **125**, 045001 (2020)

Nonlinear Two-fluid TM1 is Used to Simulate Island Formation and Transport due to RMP

• Cylindrical, circular cross-section geometry model

$$\frac{d\psi}{dt} = E - \eta \mathbf{j} + \Omega(\nabla_{||} n_e + \nabla_{||} T_e) \quad \text{Ohm's law}$$

$$\frac{du}{dtamagnetic drift}$$

$$\frac{du}{dt} = -C_s^2 \nabla_{||} P/n_e + \mu_\perp \nabla_\perp^2 \mathbf{u} \quad \text{Parallel motion equation}$$

$$\rho \frac{d}{dt} \nabla^2 \phi = \overline{e_t} \cdot (\nabla \psi \times \nabla j) + \rho \mu \nabla^4 \phi + S_m \text{Perpendicular motion equation}$$

$$\frac{dn_e}{dt} = \frac{\omega_{ce}}{v_e} \nabla_{||} \mathbf{j} - \nabla_{||} (n_e u) + \nabla \cdot (D_\perp \nabla n_e) + S_n \quad \text{Electron continuity equation}$$

$$\frac{3}{2} n_e \frac{dT_e}{dt} = \frac{\omega_{ce}}{v_e} T_e \nabla_{||} \mathbf{j} - T_e n_e \nabla_{||} \mathbf{u} + n_e \nabla \cdot (\chi_{||} \nabla_{||} T_e) \quad \text{Energy transport equation}$$

$$+ n_e \nabla \cdot (\chi_\perp \nabla_\perp T_e) + S_e \quad \text{Sources are time-independent}$$

Q. Yu, et al., POP 10, 797 (2004); Q. Yu, et al., NF 51, 073030 (2011)

Cylindrical Model is Relevant for RMP Effect on Edge Plasma in DIII-D and KSTAR Low-collisionality Plasmas

- Gyrokinetic simulation shows that 3D field effect on ballooning stability is negligible in low-collisionality ITER similar shape (ISS) plasmas [1]
- Gyrokinetic simulation shows that kink response causes little neoclassical transport [2]
- Helical boundary condition provided by full toroidal code GPEC includes kink response [3]
- Toroidal mode coupling at nonlinear stage is weak [4] due to 1) much small and separate islands, 2) strong flow shear between rational surfaces
 - [1] I. Holod, et al., Nucl. Fusion 57, 016005 (2017)
 - [2] R. Hager et al Nucl. Fusion **59** 126009 (2019)
 - [3] J-K. Park and N.C. Logan, POP 24, 032505 (2017)
 - [4] Q. Yu, et al., NF 59, 106053 (2019)

TM1 Simulation Shows Field Penetration at Both the Foot and Top of Pedestal, and Strong Screening in Between

Resonant field penetration has a low (high) threshold at the foot (top) of pedestal

• Simulations are consistent with experimental changes at the top of the pedestal

ELITE Confirms the RMP-Assisted ELM-free with Normalized Growth Rate Residing Inside the PBM Stable Region

 Initial profiles W/O RMP resides inside the PBM unstable region

 RMP-assisted ELM-free resides inside the PBM stable region

Magnetic Island Formation Causes Sufficient Pedestal Pressure Reduction only When it Aligns to the Pedestal Top

- The alignment of pedestal-top islands formation leads to narrow q₉₅ windows
 - -10/3 RMP penetrates at from t1 to t4, shielded at t5
 - ----Stronger reduction in pedestal pressure for t3 and t4

Only Well Aligned Island Formation Leads to Enough Reduction in Pedestal Pressure

- m/n=10/3 island must be close to the top of pedestal to sufficiently reduce pedestal pressure and suppress ELM
 - An island too far in can't reduce pedestal pressure
 - Stronger RMP is required to trigger an island too far out

Q. Hu, R. Nazikian, et al., PRL 125, 045001 (2020)

TM1 Simulations Unraveling the q₉₅ Windows for DIII-D n=3 and 2 RMP ELM Suppression Observed for Many Years

For n=3: q₉₅~3.1-3.3,3.4-3.65, 3.8-4

For n=2: q₉₅~3.7, 4.2,4.7

