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Resonant Magnetic Perturbations (RMPs) Are the 
Leading Strategy to Control ELMs in ITER

● DIII-D [1] and other tokamaks have achieved ELMs suppression 
by RMPs

● RMPs have been incorporated to control ELMs in ITER
● However, a quantitative understanding of the mechanism is 

required to predict and optimize the access conditions for 
ITER—RMP strength, q95 windows etc

2

suppression

DIII-D 3D coils ITER 3D coils Complete ELM suppression 
by RMPs in DIII-D

[1] T. E. Evans, et al., PRL 92, 235003 (2004); 
T. E. Evans, et al., NP 2, 419 (2006); 
T. E. Evans, et al., NF 48, 024002 (2008)

In Memoriam to Todd Evans
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Nonlinear MHD Model Reproduces RMP ELM Suppression 
Conditions in DIII-D and Predicts ELM Suppression for ITER 

● Demonstrates that pedestal top 
islands formation limits height 
and width of the pedestal to 
suppress ELM

● Reproduces narrow q95 windows 
of ELM suppression by n=3 in 
DIII-D

● Predicts ELM suppression in ITER 
within its 3D coil capability 
(Imax=90 kAt)

ITER n=3 ELM supp. windows

ITER n=4 ELM supp. windows
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Outline

● Introduction of nonlinear MHD model

● Role of magnetic island formation in ELM suppression

● Narrow q95 windows of ELM suppression, why?

● Wide q95 windows of ELM suppression, how?

● Summary
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Introduction of nonlinear MHD model
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We Use a Suite of Codes to Obtain Quantitative Predictions 
of Island Formation at the Top of the DIII-D and ITER Pedestal

[1]https://omfit.io/publications.html#ci
ting-omfit
[2] J-K. Park and N.C. Logan, POP 24, 
032505 (2017)  
[3] J. Breslau, et al., TRANSP v18.2 2018
[4] Q. Yu, et al., POP 10, 797 (2004); 

GPEC
3D boundary
conditions

(vacuum + kink)

KineticEFIT
Kinetic

equilibrium &
profiles

TRANSP
Transport

coefficients (𝛘𝛟,
𝛘e, De)

Experimental parameters and boundary conditions are used

TM1
2-fluids nonlinear

MHD modeling

https://omfit.io/publications.html
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We Use a Suite of Codes to Obtain Quantitative Predictions 
of Island Formation at the Top of the DIII-D and ITER Pedestal

[1]https://omfit.io/publications.html#ci
ting-omfit
[2] J-K. Park and N.C. Logan, POP 24, 
032505 (2017)  
[3] J. Breslau, et al., TRANSP v18.2 2018
[4] Q. Yu, et al., POP 10, 797 (2004); 

GPEC
3D boundary
conditions

(vacuum + kink)

KineticEFIT
Kinetic

equilibrium &
profiles

TRANSP
Transport

coefficients (𝛘𝛟,
𝛘e, De)

Experimental parameters and boundary conditions are used

TM1
2-fluids nonlinear

MHD modeling

ü TM1 nonlinearly calculates the penetration or screening of RMP

ü TM1 simulates the enhanced parallel transport across the islands

ü TM1 runs efficiently to be able to scan parameter space

https://omfit.io/publications.html
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Role of magnetic island formation in ELM suppression

What limits the access conditions for ELM suppression?
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● RMP amplitude varies 
slowly using I-coils 

● Sudden transition seen
to ELM suppression 

● Correlated with 
measured plasma 
magnetic response [1, 2]

9

Analysis of DIII-D ITER-Similar-Shape (ISS) Plasmas With n=2 RMP 
Shows Bifurcation to ELM Suppressed State at High RMP Amplitude 

ISS

[1] C. Paz-Soldan, et al., PRL 114, 105001 (2015)
[2] R. Nazikian, et al., PRL 114, 105002 (2015)

n=2 HFS
magnetic 
response (Gs)

TM1
magnetic 
response

TM1 simulated island width (𝜓N%)

Pedestal foot
Pedestal 
top
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● 11/2 island flattens density 
at pedestal foot, consistent 
with experiment 
—Uses realistic experimental 

parameters (resistivity)

—Enhanced parallel
transport across the island
results in density pump-out

10

Before ELM Suppression, There is Strong Screening Everywhere 
Except Pedestal Foot — Produces Density Pump-out

8/
2

9/
2

10
/2

11
/2

Screening

Penetration 

TM1
Exp

Q. Hu, R. Nazikian, et al., NF 60, 076001 (2020)

W/O RMP

ne (1019m-3)

𝚫ne (1019m-3)

11/2
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Pedestal-top Field Penetration Further Decreases 
Pressure to Stabilize Peeling-Ballooning Modes

Screening

8/
2

9/
2 10

/2

11
/2

TM1
Exp

W/O RMP

ne (1019m-3)

Te (keV) TM1Exp
W/O RMP

11/28/2 Penetration 

● TM1: m/n=8/2 magnetic island 
forms at top of pedestal 
—Further decrease density

and temperature
—Discrepancy in pedestal ne

gradient

● TM1: Strong screening between 
top and foot of pedestal 
preserves ETB [1]

[1] R. Nazikian, Q. Hu, et al., NF 61, 044001 (2021)
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● TM1: m/n=8/2 magnetic island 
forms at top of pedestal 
—Further decrease density

and temperature
—Discrepancy in pedestal ne

gradient

● TM1: Strong screening between 
top and foot of pedestal 
preserves ETB [1]

● TM1: Pressure reduction at 
island onset agrees with
experiment
—Well below EPED prediction
—ELITE shows stable to PBMs

12

TM1
Exp

EPED
pedestal-top island vs. ELM supp

Screening
11/28/2 Penetration 

Pedestal-top Field Penetration Further Decreases 
Pressure to Stabilize Peeling-Ballooning Modes

85% EPED

[1] R. Nazikian, Q. Hu, et al., NF 61, 044001 (2021)
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● Lower ne and rotation frequency 
are favorable for ELM suppression in 
DIII-D [1]
—Consistent with n=2 database

● This scaling indicates lower
penetration threshold in ITER [2] due 
to the expected low rotation
frequency

13

Scaling Law from TM1 Reproduces the Conditions for 
n=2 ELM Suppression in DIII-D Plasmas 

[1] C. Paz-Soldan, et al., NF 59, 056012 (2019)
[2] Q. Hu, R. Nazikian, et al., NF 60, 076001 (2020)

ELM supp

ELMing

Exp. M
aximum

Scaling of pedestal-top penetration threshold

⁄𝐁𝐫 𝐁𝐭 = 𝟑. 𝟓×𝟏𝟎#𝟐𝐧𝐞𝟎.𝟕|𝛚𝐄 +𝛚∗𝐞|𝟎.𝟗𝟒𝐁𝐭#𝟏

Contour plot of penetration threshold (color)
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Why narrow q95 windows of ELM suppression?

Determined by the location alignment between island and pedestal-top
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Multiple Narrow q95 Windows of ELM Suppression 
Seen in DIII-D During Plasma Current Ramp 

145380q95

Pe,ped (kPa)

ne,ped (1019m-3)

10/3

● ELM suppression for 
q95~10/3, 9/3

● Windows of ELM 
suppression Δq95~0.1

● Partial suppression at 
q95~11/3

● TM1 model can explain 
partial and full suppression 

9/3
11/3
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TM1 Reproduces the Experimental Pedestal Pressure Reduction 
Versus q95 Using Measured Profiles and RMP Amplitude 

● ELM suppression coincides with localization of narrow islands 
to the top of the pedestal 
—Pe,ped drops ≥15% during ELM suppression compared to ELMing

-15%10/3 9/311/3

Pedestal pressure versus q95 from experiment, TM1 and EPED



28th IAEA FEC, TH/2-1, Q. M. Hu
17

TM1 shows that ELM Suppression Threshold is Satisfied for m/n =
9/3, 10/3, Marginal for m/n=11/3, as Observed in Experiment 

Q. Hu, R. Nazikian, et al., PRL 125, 045001 (2020)

Predicted n=3 q95 windows represented by pedestal pressure
reduction

-15%

● TM1: Contour plot of pressure reduction vs RMP coil
— q95~3.2, 3.55, 3.85 and 4.15 determined by 9/3, 10/3, 11/3 and 12/3
— q95 width sensitive to RMP strength and distance~0.33 (1/n) 

Max IRMP
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TM1 shows that ELM Suppression Threshold is Satisfied for m/n =
9/3, 10/3, Marginal for m/n=11/3, as Observed in Experiment 

● TM1: Contour plot of pressure reduction vs RMP coil
— q95~3.2, 3.55, 3.85 and 4.15 determined by 9/3, 10/3, 11/3 and 12/3
— q95 width sensitive to RMP strength and distance~0.33 (1/n) 
— Consistent with DIII-D n=3 database in q95 vs ne,ped space

Q. Hu, R. Nazikian, et al., PRL 125, 045001 (2020)

n=3 q95 windows comparison between TM1 simulation and DIII-D database

-15%

Max IRMP



28th IAEA FEC, TH/2-1, Q. M. Hu
19

TM1 Prediction Shows Similar q95 Windows for ITER Q=10 Plasma
and the Required RMP Strength is Within the Capability of ELM
Control Coils

● ITER Q=10 15MA equilibrium and RMP configuration [1] are used
● n=3 q95 windows are predicted with RMP coil current less than half of the

full capability (Imax = 90 kAt): 
—Threshold current is lower than VIOW prediction [2]
—Narrower q95 windows compared to DIII-D

Predicted n=3 q95 windows for ITERITER Q=10 equilibrium is used

-15%

[1] L. Li, Y. Q. Liu, et al, NF 59 096038 (2019)
[2] T.E. Evans, et al, NF 53 093029 (2013)

VIOW
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[1] L. Li, Y. Q. Liu, et al, NF 59 096038 (2019)
[2] T.E. Evans, et al, NF 53 093029 (2013)
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TM1 Prediction Shows Similar q95 Windows for ITER Q=10 Plasma
and the Required RMP Strength is Within the Capability of ELM
Control Coils

● ITER Q=10 15MA equilibrium and RMP configuration [1] are used
● n=3 q95 windows are predicted with RMP coil current less than half of the

full capability (Imax = 90 kAt): 
—Threshold current is lower than VIOW prediction [2]
—Narrower q95 windows compared to DIII-D

Predicted n=3 q95 windows for ITERITER Q=10 equilibrium is used

-15%

VIOW

• Challenge: ELM suppression with narrow q95 windows does not 
provide effective operational flexibility for ITER

• How can we expand the q95 windows of ELM suppression?
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How to expand the narrow q95 windows to enable
operation flexibility?
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Prediction from TM1: q95 Windows will Expand if RMP Level 
Increases or Threshold for Penetration Decreases 

● Raise the RMP amplitude 
● Or lower the density to expand and merge q95 windows

—Lower density or rotation

ne,ped/nG = 0.35

DIII-D ISS
plasmas

ne,ped/nG = 0.25

ne,ped/nG = 0.15
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Experiments in DIII-D Observed Wider q95 Window of ELM 
Suppression at Lower Density with 50% Pressure Reduction

Sawtooth

9/310/311/3

11/3 10/3 + 9/3

11/3 + 10/3 + 9/3

ne,ped/nG = 0.35

ne,ped/nG = 0.25

ne,ped/nG = 0.15
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Experiments in DIII-D Observed Wider q95 Window of ELM 
Suppression at Lower Density with 50% Pressure Reduction

Sawtooth

9/310/311/3

11/3 10/3 + 9/3

11/3 + 10/3 + 9/3

ne,ped/nG = 0.35

ne,ped/nG = 0.25

ne,ped/nG = 0.15

• However, very large pedestal pressure reduction (up to 50%) 
unacceptable for ITER

• Is it possible to expand q95 windows but minimize confinement 
reduction? 
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TM1 Simulation Predicts Wide q95 Windows of ELM 
Suppression with Less Pressure Reduction for n=4 
RMPs #145380: q95 windows for n=4

● Closer q95 windows for n=4 RMPs
—More rational surface enhances field penetration
—Less pressure reduction (~20%)

● Wide q95 ELM suppression windows by n=4 RMP in DIII-D and ITER
—Full capability of 3D coils (Imax = 90kAt) in ITER will enable wide q95 ELM

suppression
Q. Hu, R. Nazikian, et al., PRL 125, 045001 (2020)

Predicted n=4 q95 windows for ITER
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DIII-D and ITER can Explore ELM Suppression at Higher 
Toroidal Mode Number

● New DIII-D M-coils [1] will enable exploring ELM suppression at 
n=4, 5, 6

● ITER ELM control coils (9 coils each row) are able to run at n=4, 5

[1] D.B. Weisberg, et al., NF 59, 086060 (2019)

M-coils

DIII-D 3D coils ITER 3D coils 
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Summary: Nonlinear MHD Model Reproduces RMP ELM Suppression 
Conditions in DIII-D and Predicts ELM Suppression for ITER 

● Demonstrates that pedestal top 
islands formation limit height and 
width of the pedestal to suppress ELM
—Explains dependence on 

rotation and density

● Reproduces narrow q95 windows of 
ELM suppression at n=3 in DIII-D
—Lowering density expand q95

windows

● Predicts ELM suppression in ITER 
within its 3D coil capability (90kAt)
—n=3 q95 windows similar to DIII-D
—wide n=4 q95 windows

Q. Hu, R. Nazikian et al., NF 60, 076001 (2020)
Q. Hu, R. Nazikian et al., PRL 125, 045001 (2020)

ITER n=3 ELM supp. windows

ITER n=4 ELM supp. windows
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Nonlinear Two-fluid TM1 is Used to Simulate Island 
Formation and Transport due to RMP

Q. Yu, et al., POP 10, 797 (2004); Q. Yu, et al., NF 51, 073030 (2011)

● Cylindrical, circular cross-section geometry model

Ohm’s law

Parallel motion equation

Perpendicular motion equation

Energy transport equation

Electron continuity equation

𝐝𝝍
𝐝𝐭

= 𝑬 − 𝜼𝐣 + 𝜴(𝜵||𝒏𝒆 + 𝜵||𝑻𝒆)

𝐝𝒖
𝒅𝒕

= − ⁄𝑪𝒔𝟐𝜵||𝑷 𝒏𝒆 + 𝝁%𝜵%𝟐𝐮

𝝆
𝒅
𝒅𝒕
𝜵𝟐𝝓 = 𝒆𝒕 = 𝜵𝝍×𝜵𝒋 + 𝝆𝝁𝜵𝟒𝝓+ 𝑺𝒎

𝐝𝒏𝒆
𝒅𝒕

=
𝝎𝒄𝒆

𝝊𝒆
𝜵||𝒋 − 𝜵||(𝒏𝒆𝒖) + 𝜵 = (𝑫%𝜵𝒏𝒆) + 𝑺𝒏

𝟑
𝟐
𝒏𝒆
𝐝𝑻𝒆
𝒅𝒕

=
𝝎𝒄𝒆

𝝊𝒆
𝑻𝒆𝜵||𝒋 − 𝑻𝒆𝒏𝒆𝜵||𝐮 + 𝒏𝒆𝜵 = 𝝌||𝜵||𝑻𝒆

+𝒏𝒆𝜵 = (𝝌%𝜵%𝑻𝒆) + 𝑺𝒆

diamagnetic drift

ion polarization current

Sources are time-independent
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Cylindrical Model is Relevant for RMP Effect on Edge 
Plasma in DIII-D and KSTAR Low-collisionality Plasmas

30

●Gyrokinetic simulation shows that 3D field effect on ballooning 
stability is negligible in low-collisionality ITER similar shape (ISS) 
plasmas [1] 

●Gyrokinetic simulation shows that kink response causes little
neoclassical transport [2]

● Helical boundary condition provided by full toroidal code 
GPEC includes kink response [3]

● Toroidal mode coupling at nonlinear stage is weak [4] due to 1)
much small and separate islands, 2) strong flow shear between
rational surfaces

[1] I. Holod, et al., Nucl. Fusion 57, 016005 (2017)

[2] R. Hager et al Nucl. Fusion 59 126009 (2019)

[3] J-K. Park and N.C. Logan, POP 24, 032505 (2017)

[4] Q. Yu, et al., NF 59, 106053 (2019)
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TM1 Simulation Shows Field Penetration at Both the Foot and 
Top of Pedestal, and Strong Screening in Between 

31

● Resonant field penetration has a low (high) threshold at the foot (top) of pedestal
● Simulations are consistent with experimental changes at the top of the pedestal

RMP

Island
width

Experiment
Simulation

W11/2
W8/2

ELM supp
HFS response

ψN=1.1
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ELITE Confirms the RMP-Assisted ELM-free with Normalized
Growth Rate Residing Inside the PBM Stable Region

No
rm

al
ize

d
pe

de
sta

lc
ur

re
nt

J Npe
d

Normalized pedestal pressure gradient 𝛂

Ballooning
unstable

boundary

Peeling unstable boundary
unstable

stable

W/O RMPs

With RMPs
ELM supp.

● Initial profiles W/O RMP resides
inside the PBM unstable region

● RMP-assisted ELM-free resides
inside the PBM stable region
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Magnetic Island Formation Causes Sufficient Pedestal 
Pressure Reduction only When it Aligns to the Pedestal Top

t1 t2 t3 t4 t5
W/O RMP

Exp @ t3
Exp @ t4

● The alignment of pedestal-top 
islands formation leads to narrow q95
windows
—10/3 RMP penetrates at from t1 to t4, 

shielded at t5

—Stronger reduction in pedestal 
pressure for t3 and t4

—TM1 simulated pressure profile 
consistent with experiment (t3, t4)
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Penetration boundary

34

● m/n=10/3 island must be close 
to the top of pedestal to 
sufficiently reduce pedestal 
pressure and suppress ELM

— An island too far in can’t 
reduce pedestal pressure

— Stronger RMP is required to 
trigger an island too far out

m/n=10/3
surface 

Inner Outer 

Only Well Aligned Island Formation Leads to Enough
Reduction in Pedestal Pressure

Q. Hu, R. Nazikian, et al., PRL 125, 045001 (2020)
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TM1 Simulations Unraveling the q95 Windows for DIII-D n=3 
and 2 RMP ELM Suppression Observed for Many Years 

Comparison of n=3 q95 windows 
between TM1 and DIII-D ISS database

Comparison of n=2 q95 windows 
between TM1 and DIII-D ISS database

For n=2: q95~3.7, 4.2,4.7For n=3: q95~3.1-3.3,3.4-3.65, 3.8-4


