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Introduction

ITER plans to use 3D fields, Resonant Magnetic Perturbations
(RMP), for ELM suppression

What is the physics behind the

Why is electron heat still
density pump-out?

confined?

- Pump-out (>25%) (over ~100 ms) & ,i Steeper and higher T, pedestal
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Why is turbulence intensity
higher with RMPs?

Apparent correlation between I-coil current,
turbulence intensity, v, and ELM intensity

1.00

Spectral power [AU]



XGC and M3D-C1 Are Coupled for Transport Study

in MHD-Screened RMP Field

XGC calculates:
®» Gyrokinetic plasma transport in

M3D-C1 calculates:
Perturbed MHD equilibrium in

presence of RMPs 3D magnetic equilibrium
- M3D-C1 is a two-fluid extended- + XGCis aglobal 5D
MHD code gyrokinetic, total-f particle-in-
» Domain includes plasma, cell code

 Whole volume simulation

SOL, and surrounding
including SOL, separatrix,

vacuum region.

Uses Spitzer resistivity and
realistic transport

2
coefficients (~1—)
S

Perturbed equilibrium
includes small magnetic
islands and localized regions
of stochasticity
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and magnetic axis
Self-consistent 3D
background and turbulent
electric field

Nonlinear Fokker-Planck-
Landau collision operator
Neutral particle recycling



M3D-C1 is not Sufficient to Understand Transport

- Need to Study Kinetic Physics

« DIII-D H-mode discharge #157308 - M3D-C1 yields perturbed field
with good KAM surfaces at Y, < 0.98

- Thin, weakly stochastic layer close to the separatrix (i = 0.98)
* OB is strong enough to affect trapped particle dynamics
+ Pedestal width comparable to ion banana orbit width A,

- Need to study kinetic physics to understand transport!
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RMPs Increase Density Fluctuations and ;)

Decrease Temperature Fluctuations in the Pedestal

Fluctuation Level (%)
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n=3 mode (RMP) is removed to
study changes in relative RMS
turbulence fluctuation levels

Potential fluctuations change only by
~10%.

Density fluctuations increase with
RMP.

Electron temperature fluctuations
decrease with RMPs.

These changes are correlated with
changes in the transport fluxes.
Op.is minimized by restricting 6T..



Spectra suggest enhanced TEM in pedestal slope.
ITG deeper inside does not change as much (at t~0.2 ms) /

RMP off, y=0.9 RMP off, =094 RMP off, y=0.97
w/k < 0 corresponds
to ion diamagnetic
) direction

ExB ﬂow‘.‘ L
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Electron mode
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Turbulence Intensity is Greater with RMP

But what about Transport?

There are three main transport channels:

<f [V¢ : (’UD —I—WEQUB)T] d3v>

* Neoclassical flux I'p = (V)

» Flutter transport [ _ <f [Vzp | (5B/|B‘)U||ﬂ d%>
(V)

* Turbulent ExB flux |  _ <f [Wb Vpanf ] d3v>
(V)

f=T+7
) =

| def I‘D+ F3D (...) — toroidal average

neo —
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Electron Thermal Transport Barrier in the Steep Pedestal 3

Region Survives with RMP Field from M3D-C1

Increased turbulent+neoclassical Lower effective electron heat
particle diffusivity with RMPs conductivity

Xe, turb» NO RMP

094 095 096 0.97 098 0.99 1.00
(N Wi

- Electron thermal transport barrier in the steep
pedestal region survives
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RMP-Driven Particle Diffusivity (Turbulence+Neoclassical) is §)

Sufficient for Density Pump-Out

- RMP-driven increase of neoclassical+turbulent particle diffusivity
is largely sufficient for density pump-out in the steep pedestal region

Neoclassical + turbulence
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- Increase of turbulent transport boosts pump-out
from enhanced neoclassical transport
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Use Cross-spectral Analysis to Pinpoint

the Origin of the RMP-driven Particle Flux

* Find the origin of the increased turbulent particle flux density in:
* Higher turbulence amplitude or
« Shifted cross-phase between turbulent fluctuations
*  Which mode numbers are responsible?

Cross-spectrum: S,z = (A (Yy, m, @)B* WPy, m, 9))

Cross-power: Pyp = |Sapl
Cross-phase: 84 = arctan[JI(Su5)/R(S4p)]

tor

Turbulent transport fluxes in terms of cross-power and
cross-phase:

[:(Yy,m) = a(le)Pvéi cos(6¢yn)
Q:(WYy,m) = a(yy) 2 kg [(n)P,r cos(6¢,r) + (T)P,, cos(6,7)]

5
q:(Yn,m) = Q _EkB (T)I

(a is a geometric factor from the flux-surface average.)
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Increased Particle Flux Density from m=200 at \p\~0.97 @

XGC cross-spectrum analysis
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RMPs increase particle
flux and decrease
electron heat flux
density around
Pn~0.97 at higher
poloidal mode numbers
m=200 (kgp; =0.2-0.3).

- Electron energy
transport is convective,
riding the particle flux,
which does not alter the
T, gradient much.



Study Correlation between I, and Turbulence Intensity 3)

in KSTAR discharge 18451 with n=1 RMPs

(b) t=4.82s
20 '

(a) Mitigation to Suppression (#18451), n=1 RMP

D, [a.u]

« KSTAR #18451
«  ELMing H-mode at t=2.79 s before RMP application
«  ELM mitigation at Izyp=2 kA/t
« ELMs suppressed att > 4.4 s

«  Study two time slices with M3D-C1+XGC
* t=2.79 s, Izpp=0 kA/t - Before RMP application
* 1=4.69 s, Ixpyp=2.69 KA/t &> ELM suppression
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Pedestal (ypy = 0.9) is Weakly Stochastic 2> Expect

Stronger Role of Neoclassical Transport

- Plasma shapes and safety factor profile are
very similar at t=2.79 s and t=4.69 s
«  Pump-out: central density reduced by ~25%

*  Perturbed magnetic field weakly stochastic in
the pedestal (from the q=4 surface outwards)

«  Lown; and n, = Trapped electron mode

(TEM) likely unstable
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Pedestal (ypy = 0.9) is Weakly Stochastic 2> Expect

Stronger Role of Neoclassical Transport

- Plasma shapes and safety factor profile are
very similar at t=2.79 s and t=4.69 s
«  Pump-out: central density reduced by ~25%

10.0F RazaaazEs; RARRRAREE; RAREAZEES; RARARERZE; IRBAREEEE:

*  Perturbed magnetic field weakly stochastic in

the pedestal (from the q=4 surface outwards) Vacuum

«  Lown; and n, = Trapped electron mode

Chirikov parameter
o
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XGC Simulation: Unstable Trapped-electron Modes

(TEMs) extends to pedestal top, covering 0.9 <y, <1

*  Mode structure propagates in elec. diamagnetic direction in ExB frame - TEM

*  Turbulence grows faster around pedestal top with RMPs.
*  Need synthetic diagnostic for better comparison with experiment

phase
velocity

2.162.182.202.222.24 2.162.182.202.222.24
R (m) R (m)
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XGC Simulation: Unstable Trapped-electron Modes

(TEMs) extends to pedestal top, covering 0.9 <y, <1

*  Mode structure propagates in elec. diamagnetic direction in ExB frame > TEM

«  Turbulence grows faster around pedestal top with RMPs.
* Need synthetic diagnostic for better comparison with experiment

TR

phase &

velocity k
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R (m) R (m)
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XGC Simulation: Unstable Trapped-electron Modes

(TEMs) extends to pedestal top, covering 0.9 <y, <1

*  Mode structure propagates in elec. diamagnetic direction in ExB frame - TEM
*  Turbulence grows faster around pedestal top with RMPs.

*  Need synthetic diagnostic for better comparison with experiment
Spectral power distribution Sl(ke, w)

for shot #10186 @ 15.7-15.85s dB
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XGC Simulation Exhibits Similarities to KSTAR, but

Electromagnetic Turbulence may be Missing
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Conclusions @ 20

Simulations of DIII-D (ngyp=3) and KSTAR (ngyp=1) exhibit

Higher particle flux in the pedestal > density pump-out

Electron heat transport barrier in the pedestal > maintains steep T,
gradient

TEM turbulence at ¢y, = 0.94 (DIII-D) and ¢ = 0.90 (KSTAR) are
affected by RMPs

KSTAR shows higher degree of stochasticity than DIII-D
Fundamental result is similar between n=1 (KSTAR) and n=3 (DIII-D)

»  XGC simulations of KSTAR n=1 RMP discharge find

~2x higher fluctuation amplitudes with RMPs compared to pre-RMP
phase

Experiment finds ~4x increase - electromagnetic effects might be
missing

*  Working on self-consistent RMP penetration in XGC - mitigate
uncertainty due to experimental plasma and rotation profiles

» Electromagnetic XGC will be used to study effect on ELM-turbulence
interaction
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