Development and Experimental Qualification of Novel Disruption Prevention Techniques on DIII-D

Jayson Barr¹

with X.D. Du¹, N.W. Eidietis¹, D.A. Humphreys¹, A. Hyatt¹, S. Munaretto¹, E. Olofsson¹, B. Sammuli¹, E. Strait¹, W. Wehner¹, N. Logan², Z.R. Wang², M.D. Boyer², T. Liu³, C. Rea⁴, R. Granetz⁴

¹ General Atomics
 ² Princeton Plasma Physics Lab
 ³ Dalian University of Technology
 ⁴ MIT

And the DIII-D team

Presented at the IAEA FEC 2020 May 14th, 2021

Comprehensive disruption prevention must cover the full range of control regimes

(1) Should catch 99%+ of disruptions!

The Disruption Free Protocol:

- To qualify <u>ITER-scalable</u>, <u>comprehensive</u> disruption control in <u>routine operations</u>
- Large-scale piggybacks to complement experiments: >40% run days in '19

Comprehensive disruption prevention must cover the full range of control regimes

A new proximity-to-instability control architecture has been developed for DIII-D in FY 2020

- Threshold instability value for applying action
 - Allows setting margin of stability
- Generalized architecture maps stability metrics to requested changes in plasma targets
 - Shape, Ip, β ...
 - Tunable PIDs, gains
- Output target mods combined, weighted by problem importance

Proximity-to-instability control architecture maps realtime stability metrics to modified scenario targets

Proximity-to-instability control architecture maps realtime stability metrics to modified scenario targets

Proximity controller applied for robust VDE prevention using real-time VDE- γ estimator for shape target feedback

- VDE reliably prevented until Proximity Controller disabled
 - Example: pre-shot K-target ramp to induce VDE
- Real-time VDE-γ estimators: rigid motion, or ML-based models

<u>Robust</u> control is a requirement for safe operations near stability limits

- Operational limits are limited by physics & control
- Robustly controllable VDE growth-rates assessed in recent experiments
- Robust control at $\gamma \sim 800-850$ /s for >= 3s

Future integration with include Interpretable ML, MHD Spectroscopy planned for experiments in 2021

[1] C. Rea et al 2020 IAEA FEC
 [2] T. Liu et al 2021 Nucl. Fusion (accepted)
 [3] Z.R. Wang et al 2019 Nucl. Fusion 59 024001

J. Barr/ITER FEC 2020/May 14th, 2021

Future integration with include Interpretable ML, MHD Spectroscopy planned for experiments in 2021

- Integrating with Interpretable ML [1] 1.0
 - DPRF: Disruption Prevention via Random Forests [1]
 - Contribution factors (f_c)
 map to controllable params
 - Scale by overall disruptivity

- Active Multi-Mode Spectroscopy
 Demonstrated Offline [2-3]
 - Continuous monitoring of closest-to-unstable modes
 - Real-time version ready for upcoming experiments

[1] C. Rea et al 2020 IAEA FEC
[2] T. Liu et al 2021 Nucl. Fusion (accepted)
[3] Z.R. Wang et al 2019 Nucl. Fusion **59** 024001

J. Barr/ITER FEC 2020/May 14th, 2021

Comprehensive disruption prevention must cover the full range of control regimes

2nd-to-last resort before mitigation

Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- Applied shutdown survey recipe¹:
 - $dI_{p}/dt \sim 2\text{--}3~\text{MA/s}$, sustained $\text{P}_{\text{NBI}}\text{--}2\text{--}3\text{MW}$
- Metric of success is lower final I_N ($W_m \sim I_p^2 \sim I_N^2$)

Example emergency shutdown:

Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- Applied shutdown survey recipe¹:
 - $dI_{p}/dt \sim 2\text{--}3~\text{MA/s}$, sustained $\text{P}_{\text{NBI}}\text{--}2\text{--}3\text{MW}$
- Metric of success is lower final I_N ($W_m \sim I_p^2 \sim I_N^2$)

Example emergency shutdown:

Qualifying fast, emergency shutdown after large n=1 tearing, locked modes for effectiveness on DIII-D

- Applied shutdown survey recipe¹:
 - $-~dI_{p}/dt \sim 2\text{--}3~\text{MA/s}$, sustained $\text{P}_{\text{NBI}}\text{--}2\text{--}3\text{MW}$
- Metric of success is lower final I_N ($W_m \sim I_p^2 \sim I_N^2$)

Example emergency shutdown:

Transitioning to limited topology for emergency shutdown dramatically reduces LM disruption risk on DIII-D

- After LM is detected, shape modification immediately applied
- Despite common use and improvements, ITER will likely require multiple prevention tools to improve these rates

Focus on LM trips:

J. Barr/ITER FEC 2020/May 14th, 2021 [1] J.L. Barr et al. IAEA FEC 2018

Warm, helical plasma core generation is a promising technique for emergency shutdown / alternate mitigation

- Novel emergency shutdown technique for long current quench durations
 - DIII-D high-Ip discharges (~1.7MA+)
 - Improves confinement after thermal quench
- Helical structure induced after thermal quench with large applied 3-D fields
 - Reconstructed with dual Soft X-ray Imaging
 - Consistent with ECE, TS
- Can modify current quench alongside MGI mitigation
 - Can extend current quench to ~100ms

[1] X.D. Du et al 2019 Nucl. Fusion 59 094002

Warm, helical plasma core generation is a promising technique for emergency shutdown / alternate mitigation

- Novel emergency shutdown technique for long current quench durations
 - DIII-D high-Ip discharges (~1.7MA+)
 - Improves confinement after thermal quench
- Helical structure induced after thermal quench with large applied 3-D fields
 - Reconstructed with dual Soft X-ray Imaging
 - Consistent with ECE, TS
- Can modify current quench alongside Ne injection
 - Can extend current quench to ~100ms

[1] X.D. Du et al 2019 Nucl. Fusion 59 094002

Conclusions: DIII-D is developing, testing, and qualifying control tools for comprehensive disruption avoidance

- DIII-D Disruption Free Protocol: initiative for qualifying comprehensive disruption prevention tools
- Novel Proximity-to-Instability controller implemented for real-time scenario mod's to maintain stability, applied for robust VDE prevention
- The effectiveness of emergency shutdown for disruption prevention is being rigorously quantified
- Novel technique generates warm, helical core after thermal quench to significantly slow current quench

