A Low Plasma Current (~ 8 MA) Approach for ITER's Q=10 Goal

<u>S. Ding</u>^{1,2}, A.M. Garofalo³, J. McClenaghan³, G. Li², H. Wang³, L. Wang²,
 B.A. Grierson⁴, C. Chrystal³, D. Eldon³, X. Gong², D.B. Weisberg³,
 J. Qian², C.T. Holcomb⁵ and J. Huang²

 ¹Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA
 ²Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui, 230031, China
 ³General Atomics, P.O. Box 85608, San Diego, California, 92186-5608, USA
 ⁴Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
 ⁵Lawrence Livermore National Laboratory, Livermore, California, 94551, USA EX/1-TH/1-3

dingsiye@fusion.gat.com

A Low Plasma Current Approach for ITER's Q=10 Goal is Proposed Using High β_P Scenario

Main results:

- Self-consistent 1D integrated modeling predicts Q=10 for ITER at Ip~7-9 MA
- ITER's 500 MW fusion power goal, with Q>10, is predicted at β_N >3.1
- DIII-D high β_P experiments support the physics basis of ITB formation predicted in the ITER simulations

Outline

Challenge of ITER baseline approach for Q=10 at high I_p and a possible low I_p solution using high β_P scenario

Modeling for high β_P version of ITER Q=10 scenario

DIII-D experiment supporting the physics basis of ITER high β_{P} scenario

Summary

ITER Baseline Scenario Faces Several Challenges due to High Plasma Current

- With increasing I_p
 - Challenge from 'uncontrolled' ELMs in ITER is expected to increase
 - Divertor heat load increases due to smaller heat flux width
 - Disruption risk increases

Pitts, NME 2019 Eich, NME 2017

ITER Baseline Scenario Faces Several Challenges due to High Plasma Current

- With increasing I_p
 - Challenge from 'uncontrolled' ELMs in ITER is expected to increase
 - Divertor heat load increases due to smaller heat flux width
 - Disruption risk increases
- Q=10 at low I_p requires higher normalized confinement (H₉₈) at high β_N
- Very high H₉₈ obtained in high β_P scenario independent of rotation in multiple tokamaks
 - JT-60U, DIII-D and EAST

Sakamoto, NF 2009 Qian, APS 2019 Garofalo, PPCF, 2018

Outline

Challenge of ITER baseline approach for Q=10 at high I_p and a possible low I_p solution using high β_P scenario

Modeling for high β_P version of ITER Q=10 scenario

DIII-D experiment that supports the physics basis of ITER high β_{P} scenario

Summary

ITER Q=10 is Predicted by Reducing Auxiliary Power at Low Plasma Current

ITER Q=10 is Predicted by Reducing Auxiliary Power at Low Plasma Current

OMFIT Provides Capability of Self-Consistent Prediction of Tokamak Stability Transport Equilibrium and Pedestal (STEP)

• Workflow 'STEP' in OMFIT

- Core profile prediction
- Heating source, current profile calculation
- Equilibrium reconstruction

STEP Module has been Successfully Validated on Reproducing DIII-D and EAST Experimental Data

1D Integrated Simulations Aimed for ITER Q=10 High β_P Solution are Performed Using Iterative Loop

- Using ITER heating and current drive power:
 - Neutral beams ≤ 33 MW
 - Electron cyclotron \leq 20 MW
- Temperature, density and current profiles evolved selfconsistently
 - Impurity densities are not evolved
 - Rotation set to zero
- β_N feedback control (5% error) +
 f_{Oh} feedback control (2% error)
 - Aim at low Ohmic current fraction

Will lower P_{aux} give higher Q as 0D predicted?

Summary of Major Parameters for ITER High β_P Q=10 Base Case

n _i T _i τ _E (10 ²¹ m ⁻³ keV s)	n _i T _i τ _E - 15 MA (10 ²¹ m ⁻³ keV s)
3.34 ±0.22	4.91

- Q=10 is predicted at $I_p \sim 7.5$ MA
- Medium q_{95} , high f_{Gw} , high β
- High confinement, fully non-inductive operation
- Relatively low fusion power, triple product

The Presence of Large Radius ITB Elevates Core Profile at Low Plasma Current

Lower Z_{eff} will Enhance Q by Increasing α Heating and Reducing Auxiliary Heating at Similar Confinement

- Q~10 at Z_{eff}~2.5
- The key of achieving high Q at similar P_{total} is to replace a part of P_{aux} by P_α
- Lower Z_{eff} enables higher main (fusion) ion densities and higher fusion power
- Impurity species: He (thermal), Ne

Increase β_N is An Effective Approach to Enhance Fusion Power

- $\beta_N \sim 2.8$ at $Z_{eff} \sim 2.5$ gives $P_{fus} \sim 300$ MW
- With increasing β_N :
 - Fusion power increases
 - Fusion gain increases
 - Plasma current increase; f_{Oh}~0
- Most of cases well below P_{aux} limit (53 MW)
 - Above L-H threshold power (77 MW)
- ITER 500 MW fusion power requires $\beta_N \sim 3.1-3.4$
 - $-I_p \le 9 MA$
- Triple product at baseline level

Recent DIII-D Experiments Address Challenges for ITER High β_P Q=10 Scenario

Recent DIII-D Experiments Address Challenges for ITER High β_P Q=10 Scenario

- Previous experiments achieved H₉₈≥1.5 with f_{Gw}~1.0
- At similar q_{95} and β_N , two combinations of high density (>n_{Gw}) and high confinement (H_{98y2}>1) parameters are achieved simultaneously

Outline

Challenge of ITER baseline approach for Q=10 at high I_p and a possible low I_p solution using high β_P scenario

Modeling for high β_P version of ITER Q=10 scenario

DIII-D experiment that supports the physics basis of ITER high β_{P} scenario

Summary

Developing Density ITB is An Effective Approach to Achieve Line-avg Density Above Greenwald Limit

 n_{e,ped} is kept below Greenwald limit using pedestal density feedback control

 $- f_{Gw,ped} < 0.7$

- Neon injection triggers large radius density ITB
- ITB sustains when neon injection is turned off
- Achieve reactor-level absolute density and f_{Gw} up to 1.4

Experiments Demonstrate the Compatibility of High Confinement Core and Reactor Level Density with f_{Gw} Up to 1.4 at q₉₅~8

- Stationary phase for f_{Gw}>1.0 for 1-2 sec
 - f_{Gw} ~1.3 is up to 8× τ_E
 - f_{Gw} >1.0 is up to 21× τ_E
- Line-avg density $\geq 7.6 \times 10^{19} \text{ m}^{-3}$, ITER-level density
 - Support the modeling
- H_{98} up to 1.4, β_N up to 3.5

Demonstration of the Feasibility of Developing Large Radius ITB in Future Reactor Condition

- DIII-D experiment confirms the density ITB in ITER modeling is achievable at similar q₉₅
 - Same absolute value in the core
 - Similar shape with large radius ITB
- Electron temperature profile in experiment also has similar shape with ITB compared to ITER simulation
 - Much lower value due to different $I_{\rm p},\,B_{\rm T},\,$ power, etc.
 - Different collisionality does not seem to affect ITB formation

Outline

Challenge of ITER baseline approach for Q=10 at high I_p and a possible low I_p solution using high β_P scenario

Modeling for high β_P version of ITER Q=10 scenario

DIII-D experiment that supports the physics basis of ITER high β_{P} scenario

Summary

Summary

- A low plasma current approach for ITER's Q=10 goal is proposed using high β_P scenario
- Self-consistent 1D integrated modeling predicts Q=10 for ITER at Ip~7-9 MA
- ITER's 500 MW fusion power goal, with Q>10, is predicted at β_N >3.1
- DIII-D high β_P experiments support the physics basis of ITB formation predicted in the ITER simulations

L. Wang, et al., this conference, Oral talk, Friday, May 14, 2021

Thank you !

