THE GATO CODE: ALL YOU EVER WANTED TO KNOW AND A HELLUVA LOT MORE

A.D. Turnbull, General Atomics

IMD Project Lecture Series

June 12 2007

GATO Is A Linearized Ideal MHD Stability Code Based On Variational Energy Principle of Bernstein, et al., 1958

- Minimize Lagrangian $L = W \omega^2 K$ over all permissible (physically meaningful) trial displacements ξ : $\Rightarrow \delta W(\xi^+,\xi) \omega^2 \delta K(\xi^+,\xi) = 0$
- This can be considered as an eigenvalue problem for eigenvalue λ = ω^2 and eigenfunction ξ
- For any positive definite δK(ξ[†], ξ) then:
 is the Rayleigh Quotient and its sign

determines the stability

$$\lambda = \omega^2 = \frac{\delta W}{\delta K}$$

OTT7

GENERAL ATOMICS

$$\begin{cases} \lambda = \omega^2 < 0 \Rightarrow \text{unstable } (\omega = i\gamma) \\ \lambda = \omega^2 > 0 \Rightarrow \text{stable} \end{cases}$$

• Use the projection:

$$U = \frac{\xi \cdot (\nabla \psi \times \nabla \phi)}{B_p} - Y + J\beta_{\chi} X \qquad \begin{pmatrix} \beta_{\chi} = \frac{\nabla \psi \cdot \nabla \chi}{|\nabla \psi|^2} \end{pmatrix}$$

 $X = \xi \cdot \nabla \psi \qquad Y = \frac{r}{B_{\phi}} \xi \cdot \nabla \phi \qquad J = (\nabla \psi \cdot \nabla \chi \times \nabla \phi)^{-1}$

in a nonorthogonal (ψ, χ, ϕ) coordinate system

Ritz-Galerkin Method Converts Minimization To A Matrix Eigenvalue Problem For Coefficient Amplitudes

- GATO solves for eigenmodes using Finite Hybrid Element Galerkin expansion of X, U, and Y in both radial and poloidal directions:
 - Finite Hybrid Elements (FHE) in the radial ψ and poloidal χ directions and
 - Fourier series in the toroidal $\boldsymbol{\phi}$ direction:
 - ^o Uncoupled in case of underlying axisymmetric equilibrium

 $AX = \lambda BX$

- Vector X contains finite element node values of X, U, and Y
- Matrices A and B represent the potential and kinetic energy or other appropriate norm
- System is solved for X from which the eigenvector ξ can be reconstructed

The Finite Hybrid Element Method Is A Modification Of The Standard Finite Element Method Responses

- Finite Elements:
 - Expand X, U, and Y in Finite Elements
 - Numerical differentiation for terms:

 $\frac{\partial X}{\partial \psi}, \frac{\partial X}{\partial \chi}, \frac{\partial U}{\partial \chi}, \frac{\partial Y}{\partial \chi}$

 $\delta W = \delta W(X, U, Y)$

- Minimize δW with respect to coefficients of: X,U, and Y
- Finite Hybrid Elements: $\delta W = \delta W(X, \frac{\partial X}{\partial \psi}, \frac{\partial X}{\partial \chi}, U, \frac{\partial U}{\partial \chi}, \frac{\partial Y}{\partial \chi}, Y)$
 - Expand in Finite Elements $X, \frac{\partial X}{\partial \psi}, \frac{\partial X}{\partial \chi}, U, \frac{\partial U}{\partial \chi}, \frac{\partial Y}{\partial \chi}, Y$ $\begin{cases} X \text{ with } \frac{\partial X}{\partial \psi} \text{ and } \frac{\partial X}{\partial \chi} \\ U \text{ with } \frac{\partial U}{\partial \chi} \text{ and } Y \text{ with } \frac{\partial Y}{\partial \chi} \end{cases}$
 - Impose additional constraints linking:
 - Minimize δW with respect to ____ coefficients of

 $X, \frac{\partial X}{\partial \psi}, \frac{\partial X}{\partial \gamma}, U, \frac{\partial U}{\partial \gamma}, \frac{\partial Y}{\partial \gamma}, Y$

Hybrid Elements Avoid Numerical Pollution of The Spectrum

• Precise evaluation of marginal stability requires:

$$\nabla \cdot \xi \sim \frac{\partial \xi_{\psi}}{\partial \psi} + m \xi_{\chi} + n \xi_{\phi} \to 0$$

- If X, U, and Y are linear tent elements then $\partial X/\partial \psi$, $\partial X/\partial \chi$, etc. will be constant elements and $\nabla \cdot \xi$ cannot vanish everywhere
- This can only happen everywhere
 - Not just at nodal points -

if each term has the same functional form:

$$\nabla \cdot \xi \sim \frac{\partial \xi_{\psi}}{\partial \psi}, \xi_{\chi}, \text{ and } \xi_{\phi} \text{ are the same kind of element}$$

Hybrid elements allow all components of $\nabla \cdot \xi$ to be of same type

But at some cost: stable continuum is numerically destabilized

GATO Is Designed To Treat Ideal MHD Stability Of Axisymmetric Equilibria In Full Toroidal Geometry

- Non-circular strongly shaped cross section includes:
 - Up-down asymmetry
 - Divertor or Limiter plasma edge
 - Arbitrary aspect ratio including Spheromaks and RFPs
 - Arbitrary shaped surrounding wall
- Toroidal mode numbers n = 0, 1, 2, 3, 4:
 - Extending to intermediate n ~ 10 depending on circumstances
- Arbitrary profiles:
 - Negative shear, nonmonotonic q
 - Negative q
 - Strong gradients (H-mode and ITBs)

• Some restrictions apply:

- Toroidal mode number limited by resolution but restricted to n < 15 due to breakdown in vacuum calculation
- Wall required to be toroidally and poloidally continuous with no sharp corners

GATO Consists Of Four Separate Sources That Run Sequentially And Link Through Binary Data Files

- SMAP: Mapping from equilibrium to optimally packed flux surface grid
- **SVAC:** Construct matrices A (Potential energy matrix) and B (Kinetic energy matrix) Construct wall and vacuum
- SEIG: Solve eigenvalue equation for $AX = \lambda BX$ eigenvalue λ and eigenmode X
- SPLT: Reconstruct physical eigenmode from Finite element node values in X Plotting and diagnostics
- Sources are generally labeled as: sxxxhyyy.f with xxx

$$xx = \begin{cases} map \\ vac \\ eig \\ plt \end{cases} \quad \text{and} \quad yyy = \begin{cases} 100 \\ 200 \\ 300 \\ 400 \end{cases}$$

where: $N_{\psi} = yyy$ $N_{\chi} = 2yyy$ are the precompiled mesh sizes

Input And Output Is Provided Mostly Through ASCII Files

• Input is from three files:

- 'nimrod':

- 'eqgta': Equilibrium (EFIT 'g file', TOQ 'dskgato file' or JSOLVER 'u-file'
- 'ingta': Namelist input
- 'inwgta': Namelist input for wall data
- Namelist input 'ingta' is read by all four sources:
 - Equilibrium 'eqgta' file is read by mapping SMAP only
 - Namelist input 'inwgta' is read by SVAC only and only if a finite wall
- Output is to ASCII and to cgm or PostScript files:
 - ASCII files labeled 'okgta' for k = 1, 2, 3, 4 from the four sources
 - Graphics output from SMAP and SPLT labeled 'gato1.cgm' and 'gato4.cgm'
 - Graphics metafiles (cgm) can be converted to PostScript
- Additional equilibrium and eigenmode output produced by SPLT:
 - 'vacuum': Input for Vacuum analysis (ASCII)
 - 'diagnostics' Limited input for graphics analysis (ASCII)
 - Limited input for code benchmarks (Binary)
 - 'o4dump': Complete input for graphics analysis (ASCII)

Link Between Sources Is Through Binary Data Files

032-97 fig. 1/rs

🔸 GENERAL ATOMICS

Several Unique Features Allow High Accuracy And Flexibility In Applications

- Mapping from either direct or inverse equilibria
- Choice of Jacobian:
 - Equal-arc or Straight Field line PEST (restricted wall options)
- Extremely flexible and optimized grid packing:
 - Automatic well-optimized packing at rational surfaces
 - Additional packing at edge or magnetic axis
 - Additional packing at prescribed q values or ψ values
 - Additional options for nonmonotonic q
- Flexible conducting wall options:
 - Wall on the plasma and no wall options
 - Real wall input as:
 - o Set of (r_{wall}, z_{wall}) coordinates or
 - o Set of fourier coefficients in poloidal angle for r_{wall} and z_{wall}
 - Built in wall constructions:
 - o Conformal wall (constant normal distance)
 - o Self-similar wall (constant expansion factor)
 - Expansion factor available for all wall options
- Low memory requirements:
 - Trade off between memory and disk space

Features Allow Additional Physics Within Ideal MHD Model

- Choice of Kinetic Energy norm:
 - Full kinetic energy or incompressible
 - Physical (measured) or model density profiles
 - Full eigenvector or δW code (sign of eigenvalue)
- Mode selection for most unstable mode or any other mode
- Array of final mode diagnostics:
 - Normal orthogonal representation:
 - The GATO representation: $X = \xi \cdot \nabla \psi$
 - Cylindrical representation: $\xi_r = \xi \cdot \nabla r$
 - Field line representation:

$$\xi_{\psi} = \frac{\xi \cdot \nabla \psi}{|\nabla \psi|^2} \qquad \xi_{p} = \frac{r\xi \cdot (\nabla \psi \times \nabla \phi)}{|\nabla \psi|} \qquad \xi_{t} = r\xi \cdot \nabla \phi$$

$$U = \frac{\xi_p}{B_p} - Y + J\beta_{\chi} X \qquad Y = \frac{r}{B_{\phi}} \xi \cdot \nabla \phi$$

$$\xi_z = \xi \cdot \nabla z \qquad \qquad \xi_\phi = r\xi \cdot \nabla \phi$$

- $\xi_{n} = \frac{\xi \cdot \nabla \psi}{|\nabla \psi|^{2}} \qquad \xi_{\perp} = \frac{\xi \cdot (\nabla \psi \times B)}{(|B||\nabla \psi|)} \qquad \xi_{B} = \frac{\xi \cdot B}{|B|}$ Similar decompositions for δB and $\delta A = \xi \times B$
- Array of plot types:

- Displacement vectors, line plots, Fourier analysis, contour plots
- Array of radial and poloidal coordinates for analysis:
 - Independent of coordinates used in actual calculation

Recent Upgrades Have Added Important Features And Made Code Much More Robust

- Mapping of plasma boundary:
 - Account taken of X-point in mapping of boundary
 - Error handling and correction with automatic retry
 - Search for last closed flux surface implemented
- Additional packing flexibility:
 - Independent packing for negative or positive shear region only
- Greatly enhanced diagnostics:
 - All representations of ξ δB and δA for all plot types
 - Flexibility for switching off or on
 - Independent switching of individual components
 - All major radial and poloidal coordinates:

 $ho_{midplane}$, ψ_{pol} , Ψ_{tor} , V $ho_{midplane}^2$, $\sqrt{\psi_{pol}}$, $\sqrt{\Psi_{tor}}$, \sqrt{V}

Normalized and un-normalized

- Robust eigenvalue search procedure:
 - Simple check for sign of δW
 - Limits on search to prevent runaway iterations
 - Partial restart options
- Additional $\delta \textbf{W}$ norm using only normal component of $\boldsymbol{\xi}$

$$\delta K = \int \rho |\xi_{\psi}|^2 d\tau$$
 or $\delta K = \int \rho |X|^2 d\tau$

Most Important Recent Upgrade Allows Continuum To Be Shifted Back To Stable Side Of Marginal Point

- Previously the edge of the continuum was numerically destabilized by the additional flexibility of the Hybrid Elements:
 - For a finite mesh they converged to marginal stability from unstable side
 - Required some interpretation of result in case of standard (full) kinetic energy norm
 - Led to serious numerical pollution of spectrum for alternative norm
- Analysis of numerical implementation of localized modes yields estimate of numerical destabilization:
 - Following Degtyarev, Medvedev et al. (1986), numerical destabilization term is estimated by analysis of the form of δW for displacements radially localized around a rational surface ψ_0 where m n q(ψ_0) = 0:

$$\begin{split} \boldsymbol{\xi} \sim x^{-1/2-\mu} &= \left| \boldsymbol{\psi} - \boldsymbol{\psi}_0 \right|^{-1/2-\mu} \quad \text{Then} \quad \delta W \sim \int \left| \frac{1}{\left\langle \left| \boldsymbol{B} \right|^2 / \left| \nabla \boldsymbol{\psi} \right|^2 \right\rangle} \left| x \langle \boldsymbol{S} \rangle \frac{\partial \boldsymbol{\xi}}{\partial x} - \left\langle \boldsymbol{T} \rangle \boldsymbol{\xi} \right|^2 - \boldsymbol{R} \left| \boldsymbol{\xi} \right|^2 \right|^2 \right| dx \\ & \quad \text{Greene, Johnson 1962} \\ S &= \left(\frac{B \times \nabla \boldsymbol{\psi}}{\left| \nabla \boldsymbol{\psi} \right|^2} \right) \bullet \left[\nabla \times \left(\frac{B \times \nabla \boldsymbol{\psi}}{\left| \nabla \boldsymbol{\psi} \right|^2} \right) \right] \quad \text{is the local shear} \quad \mathbf{T} = \frac{j \cdot \boldsymbol{B}}{\left| \nabla \boldsymbol{\psi} \right|^2} - S \\ (J &= \sqrt{g} = \left| \nabla \boldsymbol{\psi} \cdot \nabla \boldsymbol{\chi} \times \nabla \boldsymbol{\phi} \right|^{-1}) \qquad \langle \boldsymbol{Q} \rangle = \frac{1}{4\pi^2} \oiint \boldsymbol{Q} J d\boldsymbol{\chi} d\boldsymbol{\phi} \quad \text{is a flux surface average} \end{split}$$

🔶 GENERAL ATOMICS

Application to Ideal MHD δW Yields A Numerical Correction To Be Subtracted Dependent on Local Shear

• Applying correction to Greene and Johnson form:

 \Rightarrow Numerical correction term is:

$$\delta W_{c} = -\frac{1}{2} \int \left[\frac{\frac{1}{8} h_{\psi}^{2}}{\left\langle \left|B\right|^{2} / \left|\nabla\psi\right|^{2}\right\rangle} \left[2\langle S \rangle \langle T \rangle + \langle S \rangle^{2} \right] \left| \frac{\partial \xi_{\psi}}{\partial \psi} \right|^{2} d\psi \right] = -\frac{1}{2} \int \left[\frac{\frac{1}{4} h_{\psi}^{2}}{\left\langle \left|B\right|^{2} / \left|\nabla\psi\right|^{2}\right\rangle} \langle S \rangle \langle T + \frac{1}{2} S \rangle \left| \frac{\partial \xi_{\psi}}{\partial \psi} \right|^{2} d\psi \right]$$

• Local Shear can be evaluated in terms of equilibrium quantities:

$$S = \frac{f'}{r^2} - \frac{f}{r^2 |\nabla \psi|^2} \left(\frac{\partial}{\partial \psi} (|\nabla \psi|^2)_v - \Delta^* \psi \right) \qquad T = \frac{f}{r^2 |\nabla \psi|^2} \left(\frac{\partial}{\partial \psi} (|\nabla \psi|^2)_v - 2\Delta^* \psi \right)$$

• Flux surface integrals are then:

$$\langle S \rangle = f' \mathcal{A} - f \mathcal{B} - f' p' \mathcal{C} - f^2 f \mathcal{D}$$

$$\langle T + \frac{1}{2}S \rangle = \frac{1}{2}f \mathcal{A} + \frac{1}{2}f \mathcal{B} + \frac{3}{2}f' p' \mathcal{C} + \frac{3}{2}f^2 f' \mathcal{D}$$

• Note that: $\langle S \rangle = \frac{dq}{d\psi}$

$$\mathcal{A} = \left\langle \frac{1}{r^2} \right\rangle \quad \mathcal{B} = \left\langle \frac{\frac{\partial}{\partial \psi} (|\nabla \psi|^2)_v}{r^2 |\nabla \psi|^2} \right\rangle$$
$$\mathbf{c} = \left\langle \frac{1}{r^2 |\nabla \psi|^2} \right\rangle \mathbf{D} = \left\langle \frac{1}{r^2 |\nabla \psi|^2} \right\rangle$$

Convergence Of Physical Modes Unchanged: Continua Now Converge To Marginal Stability From Stable Side

- All modes converge to same point as without correction:
 - Convergence remains quadratic

Numerical Correction Successfully Restabilizes Continuum Modes In All Cases So Far Considered

Equilibrium with single physically unstable mode plus stable continua

Correction Convolved With Localized Displacements Provides Correction of Order of Numerical Eigenvalue

• δW_c can be significant even for small correction factor C

Correction Convolved With Localized Displacements Is Negligible For Physical Displacements

• For same correction factor C δW_c is much smaller than the total δW

Application:Spectrum For SSPX Spheromak Shows ASpheromakSequence of Unstable Eigenmodes

-0.04

 Apparent accumulation point at marginal stability

ERAL ATOMICS

ApplicationUnstableSSPX Spectrum For n = 8 ShowsSpheromak:Sturmian Behavior

- Restabilized continuum allowed multiple unstable modes to be more easily seen
- Spectrum exhibits Sturmian behavior:
 - Successive modes increase number of oscillations
 - Oscillations period becomes short near resonant surface

GATO Is Well Tested And Has Been Shown To Provide Accurate Results In A Wide Variety Of Real Cases

- GATO is extremely flexible and can treat the important features of real equilibria, including:
 - Different toroidal devices:
 - o Conventional and Advanced Tokamaks
 - o Spheromaks
 - o Reversed Field Pinches
 - Strongly shaped cross sections:
 - o Low aspect ratio, up-down asymmetry, high elongation ($\kappa \sim 6$)
 - o Diverted or limiter equilibria
- Code has most extensive set of diagnostics of any linear ideal code:
 - Equilibrium and Eigenmode diagnostics
- Code is easy to use and highly reliable:
 - Extensive internal error checking
- Major present drawback is speed:
 - Continually improving
 - Plans to incorporate SuperLU parallel eigenvalue solver
 - ⇒ Should yield orders of magnitude speedup

Continuing improvements will extend utility, accuracy and code performance in the future

