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Abstract
The ideal magnetohydrodynamic (MHD) stability limits for the edge transport
barrier (ETB) region in tokamaks are explored, concentrating in particular on
the intermediate to high toroidal mode number, n, modes. These calculations
take full account of the effect of the edge bootstrap current on the stability of
both ballooning and peeling modes. Because the current plays an important role
in MHD stability, the temperature and density independently influence stability
and, in particular, the pressure gradient that the ETB can support. The stability
calculations therefore provide limits to the achievable temperature pedestal
associated with the transport barrier which are not simply pressure pedestal
limits, as is often assumed. One important result is that increasing triangularity
is predicted to be beneficial in providing access to a higher temperature pedestal
at fixed pedestal width, at least up to triangularity ∼0.5. Another significant
result is that the finite n corrections, which are stabilizing for ballooning
modes, are important for narrow pedestal widths and permit significantly
higher temperature pedestals than one would obtain using the leading order
(n = ∞) ballooning theory. Specific calculations for equilibria characteristic
of ITER and FIRE suggest that temperature pedestals in the region of a few
kiloelectronvolts should be achievable, but the precise value depends on the
pedestal width, a prediction for which is beyond the scope of this paper.

1. Introduction

The confinement in tokamaks is widely believed to be governed by plasma turbulence which
yields large transport when the temperature gradient exceeds a critical value; this leads to
so-called ‘stiff’ transport models. For these, the overall confinement is sensitive to the value
of the temperature close to the plasma edge, which serves as a boundary condition for the
core transport modelling. For high confinement ‘H-mode’ discharges, the good confinement
is achieved as a result of suppressing turbulence in the edge plasma region, leading to a
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transport barrier able to accommodate steep pressure gradients. The temperature used in the
core transport modelling of such discharges is that at the inner edge of this transport barrier,
and is often referred to as the pedestal temperature. Thus, the larger the pedestal temperature
at a given density, the better the confinement. Previous studies using stiff transport models
have generally found that the fusion power of proposed reactors scales roughly with the square
of the pedestal height [1].

Two ingredients are required to determine the pedestal temperature: the width of the
transport barrier and the temperature gradient it can support. While there have been many
theories proposed in the literature, the mechanism for the production of the barrier width
is still not completely understood, but it is unlikely to be entirely a consequence of ideal
magnetohydrodynamic (MHD) stability, and is therefore beyond the scope of this paper. On
the other hand, ideal MHD stability can constrain the maximum achievable gradients in the
transport barrier and thus, by making assumptions about the barrier width, one can deduce
values for the maximum achievable temperature pedestal.

There are two basic instabilities that govern ideal MHD in the plasma edge region. First,
the high toroidal mode number, n, ballooning mode is driven by edge pressure gradient,
and therefore imposes a direct limit on the temperature gradient that can be maintained in the
transport barrier. On the other hand, for shaped plasmas, sufficient current density can stabilize
the ballooning mode, providing access to higher pressure gradients: so-called ‘second stability’
regime. The other instability is the peeling mode [2], which is strongly related to the kink
mode, but is not necessarily restricted to low n. The peeling mode is highly localized at the
plasma edge, and is driven by the edge current density; in contrast to the ballooning mode,
the peeling mode is stabilized by pressure gradient (i.e. a larger edge current density can
be tolerated at higher pressure gradient). A final twist to the story is that at high pressure
gradient and edge current density the ballooning and peeling modes can couple [3], leading
to particularly dangerous modes driven by both current density and pressure gradient, with a
relatively large radial extent, typically extending right across the transport barrier region. This
coupling of the two modes prevents second stability access, and has been proposed to provide
the trigger for Type I edge localized modes (ELMs) [3, 4]. For higher plasma shaping, the
modes become de-coupled, and second stability access is again possible. Schematic stability
diagrams for weak and strong shaping are shown in figure 1.

Thus, the picture of edge stability is somewhat complicated. Indeed, it is further
complicated by the strong dependence of the edge current density on the edge pressure gradient
and plasma collisionality. Typically, the current density in the transport barrier region is
dominated by the bootstrap current [5], which is proportional to the pressure gradient, but also
suppressed in higher collisionality plasmas. Thus, consider what might happen as one raises
the temperature pedestal height, keeping all other parameters (in particular, the barrier width)
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Figure 1. Schematic high n-MHD stability diagrams for the (a) weak shaping and (b) strong
shaping, showing access to the second stability regime.
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constant. First, the edge pressure gradient will rise, so that the plasma edge gradients will
begin to approach the ballooning limit. On the other hand, the increase in pressure gradient is
beneficial for peeling modes. In addition, the higher temperature will result in a reduction of
the collisionality so that, combined with the increase in edge gradient, the bootstrap current
will increase: this will tend to destabilize peeling modes, but be beneficial in providing the
possibility of second stability access for the ballooning modes. In short, there are a number
of competing effects, and the edge stability properties of edge transport barriers (ETBs) in
tokamaks are not straight forward to unravel.

In this paper, we employ the ELITE code [6], which has been designed specifically to
explore the edge MHD properties of tokamak plasmas. In section 2, we describe the family of
equilibria that we have generated to form the basis of our stability study, which are based on
those of the ITER-FEAT baseline scenario (note that the ITER-FEAT design has recently been
renamed ITER, and we will refer to it simply as ITER in the remainder of this paper). Then
in section 3, we show how the edge MHD stability constraints do indeed provide a limit for
the maximum achievable pedestal temperature, and explore some of the basic properties. We
illustrate some of the typical mode structures, and postulate ELM characteristics that might
be expected to arise from these. In section 4, we perform a more detailed study of the various
dependencies of the maximum temperature pedestal on plasma parameters such as density and
triangularity for equilibria representative of both FIRE and ITER. Finally, in section 5, we
draw some conclusions and discuss some of the consequences of our results.

2. Equilibrium properties

In this section, we describe how the basic set of equilibria are generated for the studies described
in section 3. We employ the SCENE code [7] to solve the Grad Shafranov equation, fixing
the parameters to be similar to those of ITER as shown in table 1 (note, we do not include
the effects of the separatrix here, for simplicity). In addition, we must define profiles for the
pressure and current. The pressure profile is determined from the chosen forms for the density
and temperature profiles, which are:

f (ψ) = fa + (fped − fa) tanh λ

(
ψa − ψ

ψa − ψ0

)
+

(
f0 − fped

) (
ψa − ψ

ψa − ψ0

)µ

(1)

where f represents either the density or temperature profiles as a function of the poloidal
magnetic flux, ψ . The value at the magnetic axis is represented by f0, the pedestal value by

Table 1. Parameters of the base-line equilibrium used in sections 2 and 3, representative of ITER.

Parameter Value

Major, minor radius 6.2 m, 2.0 m
Triangularity 0.33, 0.5
Elongation 1.7
Plasma current 15 MA
Magnetic field 5.3 T
Temperature pedestal width 7.0 cm
Line average density 1 × 1020 m−3

Edge density 3 × 1019 m−3

Central temperature 24 keV
Edge temperature 250 eV
Pedestal temperature 4.0 keV
βN 1.5
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fped and the edge value by fa. We take a very flat density profile, so that nped = n0, µ = 0 and
we fix the pedestal width parameter λ = 10; the edge density, na = 0.3n0. For the temperature
profile, we allow for some peaking in the core and set µ = 2. Our first study, to be presented in
the following section, explores stability as a function of normalized pressure, βN, and pedestal
temperature, Tped. For this, we fix the ratio of T0 : Tped : Ta = 24 : 4 : 0.25; varying n0 and
T0 then allows us to scan βN and Tped.

It is worth commenting that in general the density and temperature profiles will not be
of the precise form assumed in equation (1), but rather be the result of transport process and
sources and sinks of particles and heat. In the absence of a complete transport analysis, which
is beyond the scope of this paper, we propose to use the form given in equation (1), which we
believe to be representative of the true experimental situation. This provides us with a suitable
basis to explore the general trends in the ideal MHD stability of the plasma edge region as the
pedestal parameters are varied. Different assumptions about the pedestal profile shapes may
lead to slightly different quantitative predictions, but such effects are generally expected to be
small.

Turning now to the current profile [8, 9], we use a combination of bootstrap and Ohmic
contributions, as predicted by neoclassical theory. We assume that the current profile is fully
relaxed with a loop voltage independent of the minor radius (the loop voltage is constrained
by the total plasma current). Typically, we find that the current density in the edge region is
then dominated by the bootstrap current: this increases with βN due to the increase in edge
pressure gradient, and also increases with Tped due to the decrease in edge collisionality.

3. Edge MHD stability

A set of equilibria is generated according to the prescription described in the previous section.
By varying n0 and T0 we can thus scan a range of edge current density and βN. This set of
equilibria is then tested for stability using the ideal MHD code, ELITE [6], which has been
specifically developed to explore edge plasma stability to modes with intermediate to large
toroidal mode number, n. Comparison with low n stability codes has previously shown that
the expansion in n−1 employed in the ELITE code is valid down to n ∼ 5, [6, 13], so in
this study we scan a range of toroidal mode number 5 < n < 31 for each equilibrium. The
resulting stability diagram is shown in figure 2 for the higher triangularity, δ = 0.5 case of
table 1. Here, 〈J 〉 is the total plasma current divided by the poloidal cross-sectional area and
J|| is a flux surface average of the parallel current density at the plasma–vacuum interface
(weighted so that the Pfirsch–Schlüter current has zero contribution). An interesting feature
of the stability diagram is that the stability boundary limiting J|| (essentially due to a peeling
mode) is not a smooth function. This is because peeling mode stability for any particular mode

0

0.05

0.1

0.15

0 1 2 3

Stable
Unstable

βN

J 
/�

J�

__

Figure 2. Edge stability diagram for an ITER-like equilibrium with triangularity δ = 0.5; triangles
correspond to stable equilibria, while squares are unstable equilibria.
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Figure 3. Mode structure for (a) a peeling mode (βN = 1.56, J||/〈J 〉 = 0.088), (b) a n = 10
ballooning mode (βN = 2.76, J||/〈J 〉 = 0.050), and (c) a n = 10 peeling–ballooning mode
(βN = 2.40, J||/〈J 〉 = 0.104). ψN is the poloidal flux normalized so that ψN = 0 at the magnetic
axis and ψN = 1 at the boundary.

number, n, is rather sensitive to the distance of the external rational surface from the plasma
surface, which changes as the equilibrium (in particular, the edge safety factor) is modified.
By considering a range of n, and choosing the most unstable for each equilibrium, the stability
curve is less sensitive to the edge q, but some dependence remains; this is the reason for the
‘raggedness’ in the stability boundary seen in the figure 2.

At the lower βN values, the most unstable n values are those which have a vacuum rational
safety factor, q, value close to the plasma, and are dominated by a single Fourier mode, as
expected for peeling type modes: they are generally extremely edge localized (within the last 1%
of the poloidal flux) (see figure 3(a)). The maximum achievable βN = β[%]a[m]B[T]/Ip[MA]
is limited by ballooning type modes, with the highest n modes being the most unstable. These
modes tend to be rather radially extended, with a width comparable to the pedestal width
(see figure 3(b)). At high βN, high current density the modes are characteristic of peeling–
ballooning modes, with a dominant Fourier component resonant just in the vacuum, as for the
peeling mode, but coupled to a ballooning ‘tail’ penetrating well into the pedestal region (see
figure 3(c)). The plots in figure 3 show the radial structure of the amplitudes of the poloidal
Fourier harmonics, each of which peaks at the corresponding mode rational surface, i.e. where
its poloidal mode number m = nq. The classic characteristic of a ballooning mode is shown in
figure 3(b), where each of these Fourier amplitudes all have the same shape, and are strongly
localized around their respective rational surfaces. Infinite n ballooning analysis shows that
the cluster of points at low current density, high βN in figure 3 is unstable, and indeed ELITE
predicts the highest toroidal mode numbers to be the most unstable in this region, as expected
from ballooning theory [10]. As an example, figure 4 shows the s–α diagram (obtained from
the n → ∞ ballooning theory) corresponding to the equilibrium that results in the ballooning
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Figure 4. (a) The s–α diagram for the 99% flux surface, showing the proximity of the equilibrium
(cross) to the marginal stability curve. (b) Also shown is the ballooning mode structure in the
poloidal cross-section predicted by ELITE for this same equilibrium.

mode of figure 3(b): note that it is indeed close to the predicted marginal stability curve for
this mode. Also shown in figure 4 is the structure obtained from ELITE for this same mode in
the poloidal cross-section. Note its amplitude peaks on the outboard side, characteristic of a
ballooning mode. The s–α curve illustrates an interesting point: while the n = ∞ ballooning
stability predicts that for this current density (or equivalently magnetic shear, s) the pressure
gradient (parameterized by α in figure 4(a)) can be increased arbitrarily, we find from ELITE
that in fact the pressure gradient is ultimately limited by intermediate n peeling- (or kink-)
ballooning modes (n ∼ 6–8).

In general, the edge current is not well diagnosed in a tokamak, and therefore it is
difficult to assess the implications of stability diagrams such as that of figure 2. However,
for a given magnetic geometry there is a one-to-one, monotonic relationship between the
plasma current density and edge temperature: higher temperature (at fixed pressure) leads
to lower collisionality (increasing the bootstrap current) and lower resistivity (increasing the
Ohmic current). Let us assume that the plasma edge is in a steady state equilibrium, so that
the edge current density is given by a combination of the bootstrap current and Ohmic current
(driven by a steady, externally applied loop voltage). We then find that the stability diagram
can be cast in the form shown in figure 5 for (a) δ = 0.3 and (b) δ = 0.5. It should be noted that
there are two possibilities for the maximum achievable temperature pedestal: either through
the limit imposed on the pressure gradient by ballooning mode stability (the βN limit), or a
direct Tped limit due to its effect on the collisionality (which influences the bootstrap current
and therefore the peeling mode stability). Note that a somewhat higher pedestal temperature
is permitted at higher triangularity. It is also interesting to note that there is increased access
to second stability in the higher triangularity case; this can be seen by the fact that higher βN

can be achieved at higher pedestal temperature (corresponding to higher edge current density).
Note, however, as discussed earlier, there is never complete second stability access (which
would be predicted by the infinite n ballooning theory) due to intermediate n modes being
destabilized (i.e. n ∼ 6–8).

In general, because of the effect of ELMs and the different timescales associated with
pressure and current diffusion, the plasma edge is not in steady state in realistic tokamak
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Figure 5. Stability diagrams for an ITER-like discharge for (a) δ = 0.3 and (b) δ = 0.5.
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Figure 6. The stable/unstable pedestal temperature values as a function of pedestal width (and
range of 6 < n < 30 is scanned).

situations and it is strictly necessary to solve a set of time-dependent transport equations.
However, the temperature pedestal limits shown above indicate the highest pedestals that can be
expected from stability constraints (a poor transport barrier may lead to lower pedestal values,
limited by edge confinement, rather than the stability). In addition, if one makes the further
assumption that the larger ELMs observed in tokamaks are associated with radially extended
ideal MHD instabilities (an assumption supported by previous studies, e.g. [4, 11, 12, 13]),
stability diagrams like those shown in figure 5 may provide guidance for optimizing the
confinement (i.e. the pedestal temperature) while avoiding the largest ELMs.

So far we have concentrated on equilibria with a fixed pedestal width (∼7 cm). As there is
considerable uncertainty in predictions of this quantity for future tokamaks (in particular, those
with a burning plasma), it is interesting to study stability as this is varied. Thus, in figure 6 we
show the stability analyses for a range of equilibria as the pedestal width and temperature are
varied, keeping other parameters close to those of the δ=0.5 case of table 1 (here we choose to
fix the central and edge temperatures, so that to keep βN fixed, the density must be permitted
to vary a little). The first point to note about this figure is that the marginally stable pedestal
temperature is not simply proportional to the pedestal width: this is due largely to the increased
stabilizing effects of the higher order (in n−1) terms predicted by the high n ballooning theory,
which are larger for a narrower pedestal width. Thus, simple models based on a pressure
gradient limit would tend to under-estimate the maximum achievable pedestal height at low
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values of the pedestal width. Indeed, the stabilizing effects of ion diamagnetism (not included
here) may further increase the achievable pedestal temperature at more narrow widths.

4. Pedestal stability scaling for model burning plasma equilibria

As discussed earlier, the combined need to achieve a high pedestal for good confinement, while
maintaining small or no ELMs to avoid fast erosion of plasma facing components, has emerged
as a critically important issue with respect to planned next step burning plasma devices. The
importance of this issue, together with recent successes of MHD-based models in accounting
for observed pedestal constraints and ELM onset in present devices [13, 4, 11, 12], motivates
a detailed study of pedestal MHD stability behaviour in proposed burning plasma tokamak
devices. Here, model equilibria based on the superconducting ITER and the compact high
field FIRE devices are considered, following a slightly different procedure from that described
in sections 2 and 3.

In order to characterize pedestal MHD stability limits, a large number of equilibria must
be constructed which incrementally vary the pedestal width and height. For these purposes the
details of the equilibrium deep in the core are relatively unimportant, but are broadly consistent
with expected profiles for each device.

Model equilibria have been constructed to match the global parameters for each machine
given in table 2. These are consistent with the design parameters for the reference cases, except
for small modifications to the density of FIRE.

Density and temperature profiles are given a hyperbolic tangent shape in the pedestal
(resembling measured profiles (see, e.g. [14, 15]), and a simple polynomial dependence in
the core:

ne(�) = nsep + an0

{
tanh

[
2(1 − �mid)

�

]
− tanh

[
2(� − �mid)

�

]}
+ an1

[
1 −

(
�

�ped

)αn1
]αn2

T (�) = Tsep + aT 0

{
tanh

[
2(1 − �mid)

�

]
− tanh

[
2(� − �mid)

�

]}
+ aT 1

[
1 −

(
�

�ped

)αT 1
]αT 2

where � is the normalized poloidal flux, and � is the pedestal width in � space. The constants
a0 and a1 are chosen to give the desired pedestal and axis values, and α0 and α1 are chosen
to approximately match expected core profiles from transport codes. For the baseline cases,
we select nped = 0.71〈ne〉, n0 = 1.1〈ne〉, nsep = 0.3〈ne〉, αn0 = 1, αn1 = 0.5, αT 0 = 1, and
αT 1 = 2.

In the pedestal region, the parallel current is taken to be equal to the bootstrap current, as
calculated using a simplified version of the Sauter collisional model [16]. In the core, where
details of the current are relatively unimportant, the profile is taken to have a simple polynomial

Table 2. Reference parameters for the model equilibria in section 4.

ITER FIRE

Bt (T) 5.3 10
Ip (MA) 15 7.7
R (m) 6.2 2.14
a (m) 2.0 0.595
κa 1.85 2.0
δa 0.49 0.7
〈ne〉 (1020 m−3) 1.0 3.6
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Figure 7. Equilibrium profiles for a sample ITER case with pedestal width of �/a ∼ 0.03, and
pedestal temperature Tped ∼ 5 keV.

form, with coefficients chosen to give a central q0 = 1.05, and a total plasma current (Ip) as
in table 2.

A number of simplifications are made to streamline the equilibrium construction
process, including up–down symmetry (while matching the given separatrix elongation and
triangularity), and ignoring true X-points. The equilibria are calculated using the TOQ code.

To characterize the pedestal stability constraints, the pedestal width (�) is varied, and
at each value of �, the pedestal temperature is increased incrementally (with the bootstrap
current calculated self-consistently) until stability boundaries are crossed. Sample model
ITER equilibrium profiles near the stability boundary at a pedestal width �/a ∼ 0.03 are
shown in figure 7.

The intermediate n (n > ∼5) MHD code ELITE [6] is again used in the pedestal stability
calculations. ELITE has been successfully benchmarked against the GATO [17] and MISHKA
[18] codes, and allows efficient calculation of the pedestal stability bounds, and the growth rates
and mode structures of the limiting instabilities [6, 4]. A sample of toroidal mode numbers,
n = 8, 10, 15, 20, 30, are studied, over the range expected to be most unstable. A finite growth
rate (γ ) threshold (γ /ωA > 0.01, where ωA = B/R(4πρ)−1/2 with ρ the plasma mass density
at the edge) is used as a threshold for ‘instability’, eliminating slow growing modes unlikely
to trigger ELMs.

The results of these calculations of intermediate-n ideal stability bounds on Tped (at fixed
nped) as a function of the pedestal width are given for each machine in figure 8. Note that at
narrow pedestal widths, relatively high n modes are the most unstable for both cases, while at
wider pedestal widths, high n modes become second stable, and modes in the range n ∼ 10–20
are most unstable. The maximum stable pedestal temperature is found to be a monotonically
increasing function of pedestal width, but the dependence is sub-linear, particularly at small
widths. In studies using weakly shaped (e.g. low triangularity) equilibria, the decrease in
maximum stable pedestal gradient with width is marked: very roughly βped ∝ �2/3. However,
for the strongly shaped ITER and FIRE equilibria, this tendency for the maximum stable
gradient to decrease with pedestal width is partially offset by increasing second stability access
at higher widths.
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Figure 8. Maximum stable pedestal temperature for model equilibria of each device, as a function
of the pedestal width. Stability boundaries for toroidal mode numbers n = 10, 15, 20, 30 are
shown, for (a) ITER with neped = 7.1 × 1013 cm−3 and (b) FIRE with neped = 2.6 × 1014 cm−3.

Because the ITER and FIRE equilibria have different values of the pedestal density and
magnetic field, it is useful to compare the pedestal stability constraints using normalized
quantities. Figure 9 shows the pedestal stability constraints imposed by the most unstable
of the wavelengths studied, in terms of the normalized pedestal β (βNped = βpedI/aB), the
pedestal β (βped), and the MHD α parameter at the pedestal centre, where

α≡ − 2V ′

(2π)2

(
V

2π2R0

)1/2

µ0p
′

and V is the plasma volume and a prime represents a derivative with respect to poloidal flux.
The apparent trend is that the pedestal beta limits, as a function of �/a are remarkably similar
for the two devices. Note that the maximum stable α value is not a constant but, rather,
decreases strongly with increasing pedestal width. This is because finite-n modes are sensitive
to non-local equilibrium changes across the pedestal and not just the steepest local gradient;
at narrow widths the modes extend radially across the entire pedestal region and into the core,
hence they are stabilized by decreases in pedestal width at a fixed gradient. Furthermore, the
average magnetic shear across the pedestal generally decreases with increasing pedestal width.

4.1. Variation with triangularity and density

The pedestal stability results above employ equilibria with the standard set of equilibrium
parameters given in table 2. It is also of interest to study how these boundaries change with
changes in the equilibria, particularly changes in parameters such as triangularity and density
that are expected to be at least partially controllable in experiments.

The triangularity of the plasma cross-section has been found both theoretically and
experimentally to have a significant impact on the pedestal, as shown above and in, e.g.
[13–15, 19–21]. In particular, higher triangularity generally improves the effective average
curvature and increases pedestal beta limits at a given pedestal width. At high triangularity
the peeling and ballooning branches of the instability begin to decouple, and second stability
access can become possible for high n modes (as illustrated in figure 5, for example).
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Figure 9. Comparison of pedestal stability limits for model equilibria of the three candidated
devices, given in terms of (a) normalized pedestal beta, (b) pedestal beta, and (c) the MHD alpha
parameter at the pedestal center; plotted against normalized pedestal width. The stability limit
imposed by the most unstable of the studied values of n (n = 8, 10, 15, 20, 30) is shown.

Figure 10(a) shows the results of a study in which the triangularity of the last closed flux
surface (δa) is varied, while all other parameters in table 2, and the pedestal width (5% of the
poloidal flux, or �/a ∼ 0.03) are held fixed. The pedestal stability limits increase roughly
a factor of two going from low (δ ∼ 0) to high (δ ∼ 0.5) triangularity and begin to roll over
around δ ∼ 0.5. However, it should be noted that in these cases, the higher moments of the
plasma shape, e.g. the ‘squareness’, are set to zero. Previous studies suggest that stability limits
may continue to increase at very high values of δ if an optimized squareness is used [22].

Density also can have an impact on pedestal stability limits. Because the current and
resulting magnetic shear play an important role in determining pedestal stability limits,
these limits have separate dependencies on density and temperature, not just the pressure,
as discussed in section 3. Trading off density for temperature at a given pressure alters the
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Figure 10. Variation in pedestal stability limits with (a) triangularity and (b) density for FIRE and
ITER model equilibria. A fixed pedestal width of 5% of the poloidal flux (�/a ∼ 0.03) is used
and all parameters are from table 2, except the indicated one which is varied.

collisionality and the local value of the bootstrap current. A study of the variation of pedestal
stability limits with density is shown in figure 10(b). Here, the average density is varied with
the pedestal density fixed at 0.71 of the average value, and the separatrix density fixed at 0.3
of the average. Lower density results in increased bootstrap current, lower shear, increased
second stability access, and higher stability limits.

4.2. Unstable mode structure

The linear mode structure of the most unstable mode is expected to be related to the size of
the resulting ELM, though nonlinear dynamics and scrape-off-layer physics are likely to play
a significant role (see, e.g. [23, 3, 4, 11, 12, 21]).

The mode structures of the limiting instabilities in the model equilibria for both devices
have a characteristic peeling–ballooning mode structure, localized to the outboard midplane,
and extending radially somewhat beyond the pedestal. Lower n modes tend to have broader
radial extent than higher n modes, though the difference can be relatively small for a given
equilibrium. Note however that for these equilibria, lower n modes are most unstable when
the pedestal is wide, so there exists a clear correlation between the wavenumber of the most
unstable mode and its radial extent (which is wider for wider pedestals). Example mode
structures are given in figure 11.

4.3. Non-ideal MHD effects

A host of non-ideal-MHD and rotational plasma physics can potentially modify the results
of the previous sections, including toroidal flow shear, finite resistivity, finite Larmor radius
effects, kinetic resonance effects, and E × B shear.

Diamagnetic stabilization of short to intermediate wavelength instabilities has been
identified as a potentially important piece of non-ideal physics in the pedestal regime (see,
e.g. [24–28]). A full treatment of diamagnetic effects requires a detailed kinetic or two-fluid
formalism beyond the scope of this study. However, simple models can be used to estimate
the impact of diamagnetic stabilization on the results from the previous section. The usual
approach is to compare the calculated ideal MHD growth rate to the ion diamagnetic frequency
(ω∗pi), employing γMHD > ω∗pi/2 as the modified threshold for instability in the presence of
diamagnetic stabilization [25, 26]. This approach requires selecting a characteristic local value
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Figure 11. Comparison of radial eigenmode structures for (a) n = 8, (b) n = 20 in model
ITER equilibrium with �/a = 0.03, Tped = 6.2 keV. (c) two-dimensional structure of an n = 20
peeling–ballooning mode in model FIRE equilibrium with �/a = 0.03, Tped = 5 keV.

of ω∗pi, a quantity which varies rapidly over the pedestal. Here, we use the maximum value of

ω∗pi ≡ cn

eni

∂pi

∂ψ

in the pedestal region divided by
√

2 (such that the square of ω∗pi takes on its half maximum
value). Results obtained using this simple local model of diamagnetic stabilization are shown
in figure 12. (Note that values of γMHD used here are from a compressionless model. These
results are approximate and are intended only to provide an indication of the impact of
diamagnetic effects.) One limitation of this local model is that it assumes a constant level
of diamagnetic stabilization over the full radial extent of the mode, which can extend beyond
the pedestal. For narrow pedestals this can lead to a significant overestimate of the stabilizing
effect. A modification suggested by Rogers and Drake [29]3 allows a smooth transition from
the regime where the pedestal is much wider than the mode to the regime in which it is

3 A similar model is employed in the context of a circular s-alpha model in [27].
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Figure 12. Stability constraints (from n = 8, 10, 15, 20, 30 modes) on the normalized pedestal
beta as a function of pedestal width for (a) ITER and (b) FIRE, including results with the local
γMHD > ω∗pi/2 model of diamagnetic stabilization, and with the modified model described in
the text.

much narrower than the mode. The ω∗pi/2 term given above is multiplied by a factor of
1/(1 + 1/kθLp). Here, kθ is the poloidal wave number determined on the outer midplane, and
the pressure gradient scale length (Lp) is taken to be approximately the pedestal half width.
Results with this modified diamagnetic stabilization model are also given in figure 12. (Stability
limits at narrow widths in the presence of the diamagnetic stabilization are not presented in
the figure, but this should not be taken as an indication that no stability limit exists for these
cases.) Note that the diamagnetic stabilization at a given pedestal width is larger for FIRE due
to its larger value of ρ/a, where ρ is the ion gyroradius. It is expected that the simple model
presented in figure 12 may overstate the impact of diamagnetic stabilization, due for example
to the effect of variation in ω∗pi across the pedestal [28].

5. Summary

Ideal MHD constraints on the H-mode temperature pedestal are explored, and quantified
in sets of model equilibria based on the ITER and FIRE designs. Two basic instabilities
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govern ideal MHD in the plasma edge region. First, the high toroidal mode number, n,
ballooning mode is driven by edge pressure gradient, and therefore imposes a direct limit on
the temperature gradient that can be maintained in the transport barrier. On the other hand, for
shaped plasmas, sufficient current density can stabilize the ballooning mode, providing access
to higher pressure gradients: so-called ‘second stability’ regime. The other instability is the
peeling mode, which is strongly related to the kink mode, but is not necessarily restricted to
low n. The peeling mode is driven by the edge current density; in contrast to the ballooning
mode, the peeling mode is stabilized by pressure gradient (i.e. a larger edge current density
can be tolerated at higher pressure gradient). A final twist to the story is that at high pressure
gradient and edge current density the ballooning and peeling modes can couple, leading to
particularly dangerous modes driven by both current density and pressure gradient, with a
relatively large radial extent, typically extending right across the transport barrier region. These
‘coupled peeling–ballooning’ modes have been explored as a possible cause of large ELMs
[3, 4, 13], and are found in many cases to provide the relevant ideal MHD constraint on the
pedestal.

Ideal MHD constraints on the pedestal are calculated as a function of normalized edge
current and pressure gradient using series of model equilibria. Because the edge current is
generally not well diagnosed in tokamaks, and because it is the pedestal temperature which
is needed by core transport models to predict machine performance, it is useful to recast the
stability diagrams in terms of pedestal temperature and pressure gradient. A key observation
of this paper is that, because higher temperature leads to lower collisionality (increasing
bootstrap current) and lower resistivity (increasing Ohmic current), there is generally a
monotonic relationship between pedestal temperature and current. Thus, in the limit of
a steady state current, it is possible to calculate directly MHD constraints on the pedestal
temperature itself. By constructing multiple series of model equilibria, it is then possible to
calculate these pedestal temperature constraints as a function of relevant parameters such as
discharge shape, pedestal width, and pedestal density. In general, the current in the edge region
during the ELMing phase would be somewhat lower than the steady state predictions adopted
in our study (assuming that the ELMs expel edge current), suggesting that, in some cases,
somewhat higher pressure pedestals than those quoted here could be accommodated. Indeed
we note that the expected slow evolution of the current profile has inspired qualitative models
of various types of dynamic ELM cycle, for example those in [3, 4]. To quantify this would
require a self-consistent transport analysis, which we recommend for future work, but is not
attempted here.

A set of model equilibria with varying pedestal width (�) and height have been constructed
for the ITER and FIRE devices, and constraints imposed by intermediate n MHD modes have
been assessed using the ELITE code. The calculated stability bounds on βped vs �/a are
similar between the machines. The maximum stable pedestal height (βped) is a strong function
of the width, though notably sub-linear particularly at narrow widths. The maximum stable
height is a strong function of triangularity, and a weaker function of density. Intermediate to
high n modes are found to be the limiting instabilities, and calculated mode structures, which
are expected to be related to the ELM depth, extend inward somewhat beyond the pedestal.
Diamagnetic effects on the stability bounds are assessed with a local model (i.e. instability for
γ > ω∗pi/2), and with a modified local model which takes into account the finite ratio of mode
width to pedestal width. Diamagnetic effects, as modelled by these simple prescriptions, are
found to significantly increase the ideal MHD bounds and to shift the limiting mode to longer
wavelengths, though it is expected that the simple models may overestimate the diamagnetic
stabilization. It is possible to combine the calculated pedestal temperature constraints from
figure 9(a) with core transport studies such as those in [1], to give performance projections.
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These projections will be a strong function of the pedestal width, and the physics determining
this width remains a key uncertainty.

In conclusion, we have developed a procedure for evaluating ideal MHD constraints on
the temperature pedestal, and have applied this technique to characterize these constraints as
a function of shape, pedestal width and pedestal density for model ITER and FIRE equilibria.
Ideal MHD calculations of pedestal constraints have proved to be useful for understanding
pedestal and ELM observations on present machines, and provide useful guidelines for
projecting performance of future devices. A complete, fully predictive understanding of
the pedestal height likely awaits advances in dynamical modelling, including transport
processes and accounting for non-ideal effects, as well as understanding of the physics
governing the pedestal width.
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