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A model based on magnetohydrodynamic~MHD! stability of the tokamak plasma edge region is
presented, which describes characteristics of edge localized modes~ELMs! and the pedestal. The
model emphasizes the dual role played by large bootstrap currents driven by the sharp pressure
gradients in the pedestal region. Pedestal currents reduce the edge magnetic shear, stabilizing high
toroidal mode number (n) ballooning modes, while at the same time providing drive for
intermediate to lown peeling modes. The result is that coupled peeling–ballooning modes at
intermediaten (3,n,20) are often the limiting instability which constrains the pedestal and
triggers ELMs. These modes are characterized in shaped tokamak equilibria using an efficient new
numerical code, and simplified models are developed for pedestal limits and the ELM cycle. Results
are compared to several experiments, and nonideal MHD effects are briefly discussed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1449463#
ce
po

-
in

rtu

ie
s
te

ve
n
es

x
t

ice
igh
cur-
ing

in
ic-

he

of
ibed

gh
, and
in

sti-
s of
s
and
ng–
and
I. INTRODUCTION

The high confinement regime known asH-mode is a
promising operational regime for a tokamak fusion devi
H-mode is characterized by the development of a trans
barrier, which forms a ‘‘pedestal’’ in the density and tem
perature profiles, in the outer region of the plasma, just
side the magnetic separatrix. Steady state operation
H-mode is generally accompanied by the bursty edge pe
bations known as edge localized modes~ELMs!. ELMs have
the beneficial effect of transporting density and impurit
across theH-mode pedestal region; however, large ELM
can produce high peak heat loads on the divertor pla
which may be intolerable in a fusion reactor. Perhaps e
more important, ELMs limit the pedestal pressure gradie
and, together with edge transport, can directly limit the pr
sure and temperature at the top of the pedestal~i.e., the ‘‘ped-
estal height’’!. Both theory-based transport models and e
perimental observation indicate a strong dependence of

a!Paper UI1 6, Bull. Am. Phys. Soc.46, 323 ~2001!.
b!Invited speaker. Electronic mail: snyder@fusion.gat.com
2031070-664X/2002/9(5)/2037/7/$19.00
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overall confinement in the core of a magnetic fusion dev
on the pedestal height. Achieving at least a modestly h
pedestal appears necessary for successful operation of
rently envisioned next step fusion devices, and determin
under what conditions a high pedestal may be achieved
conjunction with tolerable ELMs requires a detailed, pred
tive understanding of ELM physics.

ELMs are short, repetitive perturbations of plasma in t
edge region, which occur duringH-mode andVH-mode op-
eration and lead to particle and energy loss. A rich variety
ELM phenomena has been observed, and are well descr
in recent reviews.1,2 We focus primarily on developing a
model of the large and small ELMs, which occur in the hi
pedestal pressure regimes of interest to next step devices
providede factolimits on the pedestal height achievable
experiments.

The theory of ELMs has been an active area of inve
gation over the past decade, and comprehensive review
both ELM1–5 and pedestal6,7 theory and experimental result
are available. In this paper, we present a model of ELMs
constraints on the pedestal based on coupled peeli
ballooning modes, compare the model to experiment,
7 © 2002 American Institute of Physics
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discuss its implications. Section II gives a brief discussion
peeling modes and the role current plays in the pedesta
gion. Section III describes the new numerical code, ELIT
which has been developed to allow efficient, detailed stu
of peeling–ballooning modes. In Sec. IV we describe o
model of the ELM cycle and pedestal limits, including pr
posed physics mechanisms for the ELM trigger, and the li
tations imposed on the pedestal gradient and height
peeling–ballooning modes. Section V compares the mo
with experimental results from several tokamaks, and S
VI briefly discusses the impact of nonideal magnetohydro
namic ~MHD! effects such as diamagnetic stabilization.

II. PEELING MODES AND THE ROLE OF CURRENT IN
THE PEDESTAL

The magnetic fluctuation signatures, proximity to t
ideal ballooning limit, and short time scale for ELM grow
suggest a relationship between ELMs and ideal MHD ins
bilities that has been explored by numerous authors.

However, simple models based entirely on press
driven high-n ideal ballooning modes, without consideratio
of the impact of edge current, appear to be ruled out
experiment. While the high-n ideal ballooning limit does
correspond well to the observed type I ELM threshold
some regimes, recent experiments with high edge sp
resolution diagnostics indicate that the ideal ballooning lim
can be substantially exceeded, and that observed pres
gradient limits do not scale as expected from ideal ballo
ing theory ~see, for example, Refs. 8–10!. Figure 1 shows
the results from a scan of the plasma triangularity
DIII-D, 11 indicating both that the ideal ballooning limit ca
be substantially exceeded at high triangularity, and that
strong scaling of the pressure gradient limit with triangul
ity is not predicted by ideal ballooning theory.8 Similar scal-
ing of the normalized pressure gradient with triangularity h
been observed on other tokamaks.

FIG. 1. Normalized edge pressure gradient~a! averaged over the last 20%
of the ELM cycle as a function of the upper triangularity of the plas
shape. Also plotted is the critical normalized pressure gradient for id
ballooning stability (acrit), calculated in the absence of edgeJbs .
Downloaded 14 Feb 2006 to 198.129.105.159. Redistribution subject to AI
f
e-
,
y
r

i-
y

el
c.
-

-

e

y

ial
t
ure
-

e
-

s

Incorporating the impact of edge current and finiten can
overcome the above difficulties and lead to more compreh
sive models of ELM stability. The sharp pressure gradient
the H-mode pedestal can drive strong bootstrap curre
which play a complex dual role in the stability picture. O
the one hand, edge current provides a source of free en
which drives external kink or ‘‘peeling’’ modes in the edg
On the other hand, edge current reduces the magnetic s
( ŝ) in the pedestal, which stabilizes high-n ballooning
modes, and increases the MHD pressure gradient thresh
A further complication is introduced by the couplin
between peeling and ballooning modes which occurs
finite n.

Finite edge current can drive external modes localiz
near the plasma edge. These modes were dubbed ‘‘pee
modes by Friemanet al.,12 and localized criteria for peeling
stability have been given by Lortz,13 Wesson,14 and Connor
et al.15 Peeling modes are found to be most unstable whe
rational surface is located just outside the plasma, minim
ing the stabilizing influence of magnetic perturbations in t
vacuum. In this limit, for large mode number, a necess
stability criterion can be written15

A124DM.11
2

2pq8
R JiB

R2Bp
3 dl, ~1!

whereDM is the Mercier coefficient (DM,1/4 is the Mercier
stability criterion16!, Ji is the current density along the mag
netic field B, q8 is the derivative of the safety factor wit
respect to the poloidal fluxC, Bp is the poloidal field, anddl
is the poloidal arc length element, with all quantities eva
ated at the plasma surface. Finite~positive! edge current is
destabilizing, magnetic shear is stabilizing, and the press
gradient is also stabilizing, as it increases the amplitude
DM , which is generally negative. Equation~1! provides use-
ful insight into peeling mode stability; however, it is a ne
essary, but not sufficient condition for peeling stability, as
considers only modes which are radially localized on
scale of the distance between rational surfaces, and furt
more it neglects the stabilizing contribution of the vacuu
energy. At finite mode number, particularly for lown modes
in shaped geometry, multiple poloidal harmonics couple a
a more detailed treatment is required to calculate stab
thresholds.

Studies focusing on the higher end of then spectrum
have emphasized the impact of second stability to balloon
modes, and of coupling of peeling and ballooning modes t
occurs at finiten.15,17–20Figure 218 illustrates several impor-
tant features of peeling–ballooning coupling via stability c
culations inŝ–a geometry,21 with the addition of a ‘‘mag-
netic well factor’’dM5DMŝ2/a which models the effects o
shaping and finite aspect ratio. In then→` limit, the peeling
and ballooning thresholds can both be obtained from sim
1-D calculations,15 and these are shown as the ‘‘pure pe
ing’’ and ‘‘pure ballooning’’ curves in Fig. 2~a!. Note that the
peeling mode is driven unstable by edge current@ ŝ52(1
2Ja /^J&), whereJa is the current density on the outermo
flux surface, and̂ J& is the average current density in th
plasma# and stabilized by finitea as expected@Eq. ~1!#, and

al
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2039Phys. Plasmas, Vol. 9, No. 5, May 2002 Edge localized modes and the pedestal . . .
that a wide stable path to the second stable region ex
between the pure peeling and pure ballooning unstable
gions. However, at finite values ofn (n520 is shown!, the
peeling and ballooning modes couple and can close off
cess to the second stability region, as shown by the ‘‘
coupled mode’’ curves in Fig. 2~a!. Increasing the magneti
well decouples the modes and reopens second stability
cess as shown in Fig. 2~b!. The strength of the peeling–
ballooning coupling is a function ofn, and the second sta
bility gap opens more easily for highern modes. As the
magnetic well deepens~i.e., shaping improves!, the edge sta-
bility transitions rapidly from a regime in which essential
no n’s have second access (n*50 will generally be stabi-
lized by finite Larmor radius effects!, to a regime in which
all n*10 have access to second stability.

Including current in studies of the pedestal leads to
separate dependence of MHD stability on density and t
perature, rather than just pressure, because of the strong
lisional dependence of the bootstrap current. Important
plications of this will be discussed further in Sec. IV.

III. THE ELITE CODE

Analysis of peeling–ballooning modes in simple geo
etry suggests that stabilization of high-n ballooning modes
by magnetic shear, destabilization of peeling modes by
rent, and peeling–ballooning coupling combine to imply th
intermediate-n coupled peeling–ballooning modes are oft
the most unstable MHD modes in the pedestal. Furtherm

FIG. 2. The marginal stability contours inŝ–a space for~a! then5` pure
peeling and pure ballooning modes, as well as then520, dM520.6 2D
coupled peeling–ballooning mode and~b! a sequence of curves for then
520 2D coupled mode, withdM520.6,20.64,20.645, showing second
stability access reopening at the deepest well (dM520.645).
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the stability of these modes is expected to be a strong fu
tion of cross section shape, as well as pressure and cu
profiles.

To develop a quantitative model, and allow for detail
comparisons with experiment, a highly efficient tool able
characterize pedestal stability over a broad range ofn and a
wide, multidimensional space of pedestal parameters
needed. To this end, we have developed the Edge Local
Instabilities in Tokamak Experiments~ELITE! MHD stabil-
ity code. ELITE employs an extension of classical balloo
ing theory to incorporate the surface terms which drive pe
ing modes, and carries the expansion through two order
1/n for accuracy at intermediate to highn*5. A further ex-
pansion is carried out in poloidal harmonics (m). At high n,
a large number of poloidal harmonics are important, howe
each harmonic tends to be localized around its rational
face~s!. ELITE employs a windowing technique, allowing
to retain a relatively small number ofm’s at each radial
location for numerical efficiency. The analytic expansi
procedure, and further details of the code are described
companion paper.22 ELITE outputs not only stability thresh
olds, but also growth rates, and poloidal and radial mo
structures. ELITE has been successfully benchmar
against the MISHKA compressionless MHD code23 for 5
,n,50,22 and against the GATO code24 as described in the
following section.

IV. ELM AND PEDESTAL MODEL

Peeling modes become unstable at largeJped, but are
stabilized by increasingpped8 . High-n ballooning modes are
unstable at largepped8 at low Jped, and coupled peeling–
ballooning modes are unstable at largepped8 and largeJped.
Increased shaping~i.e., higherDM! decouples the peeling
and ballooning modes and leads to stability limits at high
pped8 , Jped and lower values ofn.

These stability limits can be quantified using the ELIT
code in conjunction with low-n stability codes such as
GATO. One approach is to fix the density/temperature ra
and the pedestal width, and vary the pedestal pressure g
ent, while calculating the bootstrap current self-consisten
Following this procedure for different cross section shap
allows us to further quantify the ‘‘working model’’ of ELMs
developed on DIII-D.4,9 Figure 3 shows the stability thresh
olds calculated by GATO and ELITE for an equilibrium
based on a low squareness DIII-D discharge, for which la
ELMs and highp8 are observed in the experiment. For th
case, the nominal ballooning limit~then5` limit calculated
with the edge current forced to zero! is p8
53.1 Pa Wb21 Rad, and pressure gradients exceeding t
limit by factors of 2 to 3 are observed in the experiment,
reasonable agreement with the predicted stability limit, i
posed by n510 peeling–ballooning modes atp8
;8 Pa Wb21 Rad. Note that good agreement in both pr
dicted stability threshold and mode structure is achieved
tween GATO and ELITE in their region of overlap (4<n
<10), providing a successful benchmark of the two code

Figure 3 also provides a demonstration that the conc
of second stability, developed from simple analysis inŝ–a
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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geometry, carries over to shaped 2D global equilibria. In
presence of the large bootstrap current, which reduces m
netic shear, highn*15 modes are stabilized, and rema
stable at pressure gradients well in excess of the high-n bal-
looning limit that obtains in the absence of bootstrap curr
(p853.1 Pa Wb21 Rad).

In general, the density and temperature can vary in
pendently, allowing for multiple self-consistent values of t
pedestal current at a givenp8. To explore the two-
dimensional pedestal parameter space in this more gen
case, we construct a set of up–down symmetric D-sha
equilibria, chosen to resemble Joint European Torus~JET!25

plasmas, with major radiusR53 m, elongationk51.6, tri-
angularityd50.3, and fixed shape hyperbolic tangent te
perature and density profiles. The current profile is calcula
self-consistently including Pfirsh–Schlu¨ter, diamagnetic,
bootstrap, and ohmic contributions, accounting for collisio
ality corrections. Stability is then calculated for a range
modes, 5,n,31. The stability boundary for this range o
modes, and radial eigenmode structures of the limiting in
bilities are shown in Fig. 4. Because the shape of the pro

FIG. 3. Stability threshold inp8,n space calculated using the GATO an
ELITE codes.

FIG. 4. Stability boundary inJ, bN space for the range 5,n,31 for JET-
like equilibria with k51.6, d50.5. The radial eigenmode of the limiting
instability in different regimes is also shown, along with a contour plot
the 2D structure of ann56 peeling–ballooning mode.
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is fixed, the pressure limit can be described equivalently
terms ofp8 or p, and here is given by the normalizedbN

5baB/I , whereI is the total plasma current, and the plasm
b58pp/B2. For these equilibria, second stability to high-n
ballooning modes is possible at high current, however t
access is cut off by intermediaten56 – 8 peeling–ballooning
modes as shown. Stability boundaries calculated in this fa
ion set limits on the pedestal height at a given width, and
calculated radial extent of the mode structure in various
gimes is employed in our ELM model. Furthermore, we no
that, largely because of the strong collisionality depende
of the bootstrap current, there is a monotonic relations
between the pedestal current, and the pedestal temper
(Te) in the regime of interest. Hence it is possible to rec
Fig. 4 in bN , Te space, and calculate limits on the pedes
temperature itself imposed directly by MHD stability. For th
above case, this yields aTe limit of ;2.6 keV at bN;2.
Increasing triangularity tod50.5 increases this limit to
;3.2 keV.

These stability calculations suggest a model of ELMs
which peeling–ballooning instabilities provide the trigge
and ELM size correlates with the radial depth of the m
unstable mode. The stability limits imposed by coupl
peeling–ballooning modes can be envisioned schematic
as in Fig. 5~a!. The location inp8, J space at the time the
ELM is triggered will also contribute to its dynamics, and
is possible to postulate semiquantitative models of vari
types of ELM cycle. At least three types of MHD-drive
ELM cycle can be envisioned for this type of stabili
boundary, as illustrated schematically in Fig. 5~b!. In each
case, power flowing from the core causes the pedestal gr
ents to rise between ELMs on a transport time scale, w
~mostly bootstrap! current generally rising more slowly to
ward its steady state value. The cycle labeled ‘‘III’’ will oc

f

FIG. 5. ~a! Schematic diagram of stability limits inpped8 , Jped/^J& space, for
a variety of cross section shapes.~b! Proposed simplified model of small an
large ELM cycles.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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cur at low density and low input power, such that the curr
rises to exceed the peeling limit well before the press
gradient reaches the ballooning limit. These ELMs are
pected to be small, both because the peeling modes trig
ing them have narrow mode structures, and because
occur at low pedestal height. The ELM frequency is expec
to decrease with input power, because the pressure gra
will rise more quickly, stabilizing the peeling mode. Hen
this cycle provides a model for the low density variety
Type III ELMs ~high density Type III ELMs are likely driven
by resistive modes beyond the scope of ideal MHD analys!.
At higher power and low density, cycle ‘‘I’’ will occur, gen
erating large ELMs both because the relatively lown
peeling–ballooning modes have a broad radial structure,
because the initial pedestal pressure collapse will leave
pedestal in the unstable domain until the current relaxes
much lower value. This cycle’s frequency will increase w
input power, and it provides a model for large type I ELM
Finally, at large input power, where the total steady st
current at the pressure limit does not exceed the peeling l
(Jtot,Jpeel), cycle ‘‘II’’ occurs. This can occur either at high
density, where high collisionality leads to a lowJbs ~leading
to a model of small type I ELMs!, or it can occur at some
what lower density when the peeling limit is high due
strong shaping or large magnetic shear. This cycle is
pected to yield relatively small ELMs because both the hi
n ballooning modes which are most unstable at low curre
and the intermediate-n modes most unstable for high-q high
d type-II ELM cases, tend to have narrow mode structur
and because the pressure loss immediately following
ELM crash returns the pedestal to a stable region of par
eter space.

Note that in the above stability studies, the density a
temperature profile shapes, and therefore the pedestal w
have been held fixed. Stability limits will in general be
function of this width, which is likely determined by a com
plex interplay of transport, stability, and atomic physics. S
bility itself can place constraints on the pedestal width a
given gradient, as finite-n modes are sensitive to the pedes
height as well as the local gradient. Study of these stab
based constraints on the pedestal width and their integra
with transport constraints is an important direction for futu
work.

V. COMPARISON WITH EXPERIMENT

Recent advances in high resolution pedestal diagnos
allow for detailed comparisons of the model with a range
experimental measurements.

General trends in pedestal stability with shape have b
found to agree with experimental observations.8,9 ELITE cal-
culations such as those shown in Fig. 3, allow further qu
tification of such comparisons, and are found to agree w
observed pressure gradient limits in strongly shaped
charges, as discussed in the preceding section.

To provide a direct confrontation of the stability-bas
model with experiment, we present first a case study, follo
ing the time evolution of DIII-DVH-mode shot 97887 and
evaluating the feasibility of intermediate-n peeling–
Downloaded 14 Feb 2006 to 198.129.105.159. Redistribution subject to AI
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ballooning modes as a trigger for observed ELMs. We th
briefly discuss additional comparisons on the JT-60U26 and
Alcator C-Mod27 tokamaks.

A. Case study: DIII-D shot 97887

In DIII-D VH-mode shot 97887, theL –H mode transi-
tion at t;1810 ms is followed by a long ELM free period
terminated by a large ELM att;2240 ms. To test the viabil-
ity of peeling–ballooning modes as the ELM trigger, th
growth rates of these modes are calculated with ELITE,
ing experimentally reconstructed equilibria at 50 ms int
vals. Figure 6 shows then510 growth rate~g! normalized to
vA5vA /R, wherevA is the Alfvén speed. Intermediaten
peeling–ballooning modes are found to go unstable at
nificant growth rates just before the first ELM is triggere
The valuen510 is chosen for the plot as it exhibits th
largest value ofg/v* .

A further test is provided by comparing the calculat
mode structure with the observed radial ELM depth. Figu
7~a! shows the measured relative electron temperature
during an ELM (DTe /Te), using normalized poloidal flux
~c! as a radial coordinate. Good statistics are attained
taking the average loss profiles from Thomson scattering,
the two large ELMs occurring in the interval 2200 ms,t
,2400 ms. Then510 radial eigenmode structure calculat
just before the first large ELM (t52230 ms), is shown in
Fig. 7~b!. The measured ELM depth~for example, using full
width at half maximum! and predicted mode depth agree,
predicted by the ELM model. Both extend significantly b
yond the pedestal width (0.95,c,1 ). The 2D structure of
the MHD radial displacement is shown in the contour p
inset in Fig. 7~b!.

Additional confirmation of the predicted ballooninglik
mode structure is provided by results from divertor balan
experiments on DIII-D.28 It is found that ELM energy depos
ited to the inner divertor leg becomes negligible in a dou

FIG. 6. Amplitude of the divertorDa signal is shown above, indicating th
L –H transition and ELM times. Calculatedn510 normalized growth rate
as a function of time is shown below, along with an estimate of the norm
ized v* /2.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2042 Phys. Plasmas, Vol. 9, No. 5, May 2002 Snyder et al.
null configuration, suggesting that the ELM is localized
the low field side of the discharge, in agreement with
calculated mode structure.

B. Comparisons with JT-60U and Alcator C-Mod

Further comparisons of the model with observed EL
characteristics and pedestal limits have been carried ou
the JT-60U and Alcator C-Mod tokamaks. These comp
sons have consisted largely of side by side comparison
pedestal stability and mode structure in pairs of shots ex
iting different ELM behavior.

On JT-60U, a regime of small ‘‘grassy’’ or ‘‘type II’’
ELMs is observed at highq and highd, while large ‘‘giant’’
ELMs are observed at lowerq,d.29 ELITE calculations for
n512, using experimentally reconstructed equilibria duri
the ELMy period, find that both grassy and giant ELM cas
are marginally stable to peeling–ballooning modes. Bro
mode structures are found for giant ELMs, and narrow
structures for grassy ELMs, in agreement with the EL
model.

Peeling–ballooning stability of ‘‘EnhancedDa’’ ~EDA!,
ELM-free, and ELMing Alcator C-Mod discharges has be
studied with ELITE. Intermediate 5,n,50 growth rates
were found to increase strongly with edge current, and to
higher with broader mode structure in ELMy cases than
EDA or ELM free. Results appear to be consistent with o
model of ELMs as intermediate-n peeling–ballooning
modes, while edge oscillations in EDA mode appear no

FIG. 7. ~a! The observed radial profile of relative electron temperature l
across an ELM.~b! Radial profile of the calculatedn510 eigenfunction, just
before the first ELM is triggered. The inset is a contour plot showing the
structure of the MHD radial displacement.
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be related to ideal MHD instability. Results are to be d
cussed in detail in Ref. 10.

VI. DIAMAGNETIC STABILIZATION

The ideal MHD model used in the preceding sectio
neglects finite Larmor radius~FLR! effects which can be
significant in the pedestal. In particular, diamagnetic d
stabilization has been considered by several authors as a
tentially important effect in the pedestal~see, for example,
Refs. 30–33!.

The diamagnetic drift (v* ) is a strong candidate to im
pact peeling–ballooning stability in the pedestal, because
strong pedestal pressure gradient leads tov* values that can
be comparable to ideal MHD growth rates in many cas
particularly at highern. The analytic relation34,35

2gMHD
2 5v~v2v* i !, ~2!

wheregMHD is the ideal growth rate, implies that the ide
MHD instability becomes stabilized whenv* i /2.gMHD .
Equation~2! neglects kinetic effects, and assumes a cons
value forv* i . Hastie, Catto, and Ramos32 have developed a
formulation for treating the strong variation ofv* i typical of
the pedestal, and have found that strong variation ofv* i

diminishes its stabilizing effect.
An estimate ofv* /2 normalized tovA is plotted in Fig.

6. While there are significant uncertainties in bothv* andg,
a model which predicts the ELM will appear wheng
.v* /2 appears to be consistent with observations.

Motivated by consideration of diamagnetic stabilizatio
we designate the mode with the largest value ofg/v* ~or
equivalently,g/n for a given equilibrium! as the most un-
stable mode for the purposes of our ELM model. Incorpor
ing nonlocalv* effects into ELITE self-consistently is a
important direction for future work.

VII. SUMMARY

ELMs can limit tokamak performance both directly, v
large transient heat loads to divertor plates, and indirec
through constraints placed on the edge pedestal height w
impact global confinement. Hence a quantitative and pre
tive understanding of ELM physics is needed to reliably d
sign next step fusion devices with both a high pedestal
tolerable ELMs.

The sharp pressure gradients in theH-mode transport
barrier drive large bootstrap currents, and the combination
largep8 and j provides drive for a variety of MHD instabili-
ties over a wide range of toroidal mode numbers (n). The
current plays a complex dual role in the pedestal, on the
hand, driving peeling instabilities, while on the other ha
reducing shear and providing second stability access to
looning modes. The picture is further complicated by t
destabilizing coupling of peeling and ballooning mod
which occurs at finiten.

A highly efficient, new MHD stability code, ELITE, has
been developed to allow broad, quantitative study of MH
limits imposed on the pedestal over a wide range ofn
.;5. ELITE has been used to explore the limits impos
both on pedestal pressure gradient, and through the collis

s
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ality dependence of the pedestal current, on the pedestal
perature itself. We find that the limiting instability is gene
ally a peeling–ballooning mode of intermediate mo
number (3,n,30).

We propose a model of ELMs in which peeling
ballooning modes provide the trigger, and the radial depth
the ELM correlates with the radial structure of the most u
stable mode. The ELM size is proposed to correlate b
with the radial mode structure, and with the location of t
stability boundary in the pedestal parameter space. Qua
tive ELM cycle models are also proposed to explain the
served ELM types which occur at high power.

Comparisons with experiment find that the calcula
stability limits are consistent with observations. A case stu
with a DIII-D VH-mode structure finds that the first ELM
triggered just after peeling–ballooning growth rates achi
significant values, and the observed ELM depth is in go
agreement with the calculated mode structure of the m
unstable mode.

Diamagnetic stabilization is expected to contribute
pedestal stability, particularly at highn. The impact ofv* is
approximated by choosing the mode with largestg/v* as
the most unstable, and comparing values ofg and v* /2.
Incorporating diamagnetic effects into ELITE se
consistently is an important piece of future work.

While a great deal can be learned about ELMs and p
estal physics from linear stability analysis, nonlinear simu
tions, and incorporation of peeling–ballooning based EL
models into transport simulations are needed to develop f
quantitative descriptions of the complex dynamics of
ELM and pedestal dynamics, and these represent a cri
direction for future work and further elaboration of o
model of ELMs and constraints on the pedestal.
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