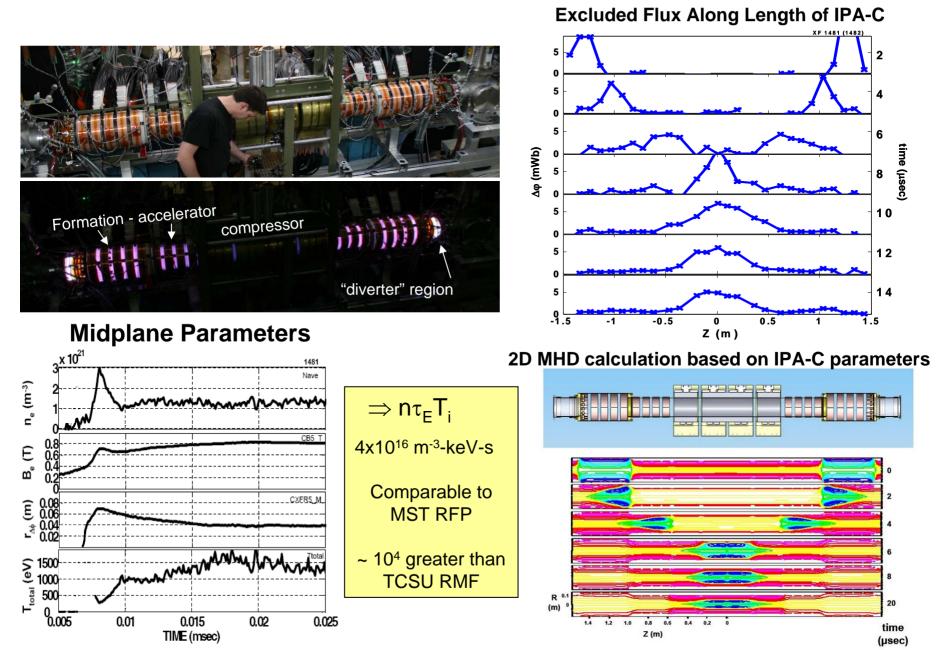


Pulsed High Density (PHD) Fusion



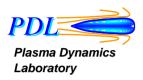
Magneto-kinetic heating to fusion temperatures: Kinetic energy is transferred from array of axially sequenced low field coils and thermalized by self compression into high field burn chamber

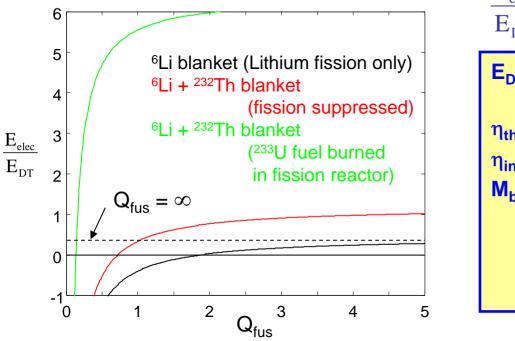
Proof of Concept Experiment IPA-C

(Inductive Plasma Accelerator w Compression)

Concept Key Parameters

Parameter/Issue	Present/	ITER-era	Comments	
	Past Value	Reactor		
Confining Field	0.5 -10 T	20 T	10 T employed by Green 2 T in r _c = 0.4 m by Rej 5 T (12 T in mirror) by Wells	
Pulse length Δt , ($\Delta t / \tau_E$)	0.4 ms (1)	0.5 ms (1)	Pulsed fusion	
External sustainment Current drive power Current drive efficiency	Not Needed	Not Needed	What it is all about	
Major radius r _s	0.02 to 0.2 m	0.05 m	(minor radius = rs·(1- $\sqrt{2}$). r _s is typically = $\frac{1}{2}$ r _{coil} in PHD FRCs	
Elongation (I _s /2r _s) Central density (range) T _e (max) keV T _i (max) keV	3 to 10 1x10 ²¹ - 2x10 ²³ 0.5 (LSX) 6 (TRISOPS)	15 – 20 1x10 ²³ 2 5 - 10	Increased elongation is favorable to stability and is the result of $I_s \sim r_s^{0.4}$ with adiabatic compression	
$<\beta>$ within separatrix	0.76 to 0.98	0.87	Axial Equilibrium constraint: $\langle\beta\rangle = (1 - \frac{1}{2} x_s^2) x_s = r_s/r_c$	
Energy confinement time FRC form/accel/comp time Ion axial transit time	0.4 ms (LSX) 10 μs (IPAC) 0.25 μs (IPAC)	0.5 – 1.5 ms 25 μs 0.2 μs	For $Q_{fus} = 1 - 3$ Other quantities of interest: $\lambda_1 \sim 10 \text{ m } \tau_{ex} \sim 0.05 \text{ ms } \rho_{\alpha} = 2.5 \text{ cm}$	


Key Parameters (Continued)


Laboratory

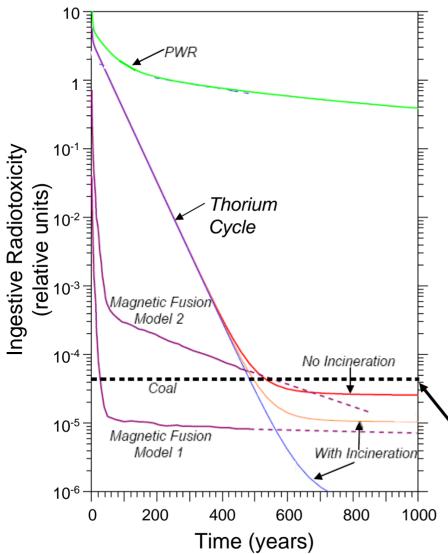
Parameter/Issue	Present/	ITER-era	Comments
	Past Value	Reactor	
Fusion power density	2x10 ⁻⁴ T·s	1-2x10⁻³ T⋅s	
Global particle transport	2 m²/s (LSX)	0.2 m²s	PHD FRC is vacuum insulated. Convective end loss is dominant with $(\tau \sim \tau_N)$. $D_s \sim r_s^2/16\tau$ for prolate FRC $\Rightarrow D_s \sim n^{-1/2}$ (LHD)
Stability parameter s/ ϵ	4.7/ 7 (LSX)	3.3/ 15	s is defined below. ϵ is FRC elongation (I _s /2r _s). Ratio < 0.5 for good confinement
Fusion Energy (MJ)	NA	1.5-5 MJ/pulse	Assumes 1 < Q _{fus} < 3
Neutron Wall loading Plasma exhaust (MW/m ²)	NA	1 – *10 MW/m² 1 – *10 MW/m²	A free parameter to be optimized based on techn. and economics *Liquid wall for high power dens.
Heat load to wall $-\Delta T$ (E _{in} =0.1E _{pl} and A _{wall} =3 m ²)	NA	50-150 kJ/m² ∆T= 66-200 °C	Be PFC - particle flux negligible $\Delta T = 2E_{in}(\pi \kappa \rho C_p t)^{-1/2}$
Magnetic pressure pulse to wall / yield str Be tube	NA	700 / 3500 bar	Pulse is less than wall inertial time so that impact is minor

$$s = \frac{1}{r_s} \int_{null}^{r_s} \frac{r}{\rho_i} dr = \frac{r_s}{2\pi r_c} \frac{r_s}{\rho_{ie}} \sim \frac{1}{12} \frac{r_s}{\rho_{ie}}$$

Low Q More Than Sufficient for Fissile/Fusile Breeder Reactor

$$\begin{split} \frac{E_{elec}}{E_{DT}} &= \frac{1}{\eta_{th}Q} \Big(\eta_{th} + (1 + M_{bl}) \eta_{in} \eta_{th} Q - 1 \Big) \\ \textbf{E}_{DT} \text{ - energy from fusion reaction} \\ &= 17.6 \text{ MeV} \times N_{DT} \\ \eta_{th} \text{ - therm. to elect. conv. eff. = 0.4} \\ \eta_{in} \text{ - ion heating efficiency = 0.7} \\ \textbf{M}_{bl} \text{ - effective blanket multiplication} \\ &= 0.14 \ [^{6}\text{Li} \Rightarrow 1.1 \text{ T} + 4.8 \text{ MeV}] \\ &= 2.0 \ \ [^{6}\text{Li},^{232}\text{Th} \Rightarrow 1.1 \text{ T}, 1.3 \ ^{233}\text{U} + 49 \text{ MeV}) \\ &= 5.0 \ \ [^{233}\text{U},n \Rightarrow \text{FP}, 2.5 \text{ n}+198 \text{ MeV}] \end{split}$$

•Fusion electrical energy generation per fusion increases little beyond $\rm Q_{fus}$ ~ 5 with high ion heating efficiency


•Blanket heating from fissile fuel production dominates electrical energy production for $Q_{fus} > 1$

•Even for Q < 1 additional energy generation from bred fissile fuel dwarfs energy production from Q = ∞ fusion alone

Plasma Dynamics Laboratory

Ingestive Radiotoxicity for Fission, Fusion, and Thorium Hybrid

• Fusion produces the least toxic waste in both duration and intensity

BUT -

- Thorium cycle produces negligible long lived waste allows local storage
- Incineration of fission fragments is unnecessary for the thorium cycle.
- Current PWRs can convert to thorium if seed ²³³U can be produced in hybrid

Coal burning associated, long lived ingestive radiotoxicity due to impurities in coal - used as a good reference point for no need of geologic storage