Mechanism of Turbulence Stabilization

K.W. Gentle, W.L. Rowan, I. Bespamyatnov, Jakub Felkl

> Fusion Research Center University of Texas

> > Austin

Outline

➤ The Helimak is a good model of drift-wave turbulence with magnetic curvature and shear and dimensionless parameters similar to the outer region of a tokamak

The turbulence and radial particle transport can be reduced in a bifurcation caused by application of radial bias

The bias changes flow velocities, but turbulence reduction does not imply increased velocity shear

Abstract

The Helimak is an approximation to the infinite cylindrical slab. Radially segmented isolated end plates allow application of radial electric fields that drive radial currents. Above a sharp threshold in applied voltage (driven current), the fractional turbulent amplitude is greatly reduced, as is the radial turbulent particle transport. The mechanism is rather complex, with density fluctuations, potential fluctuations, and particle flux changing independently in different locations. Contrary to expectation, the radial correlation length is not always reduced by turbulence suppression. Spectroscopic measurements of ion flow velocity profiles do not show increased velocity shear strongly associated with suppression.

Helimak Geometry

R = Major radius (Tokamak minor radius)

z = Vertical (Tokamak poloidal direction)

φ = angle(Tokamaktoroidal angle)

Helimak Dimensions and Parameters A Sheared Cylindrical Slab

 $\begin{array}{ll} <\!\!R\!\!> = 1.1 \ m & \Delta R = 1 \ m & h = 2 \ m \\ B_T = 0.1 \ T & B_v \leq 0.01 \ T & \text{Pulse} \leq 60 \ s \\ \\ \text{Plasma source and heating:} & 6 \ kW \ ECH & @ 2.45 \ GHz \\ n \leq 10^{17} \ m^{-3} & T_e \sim 10 \ eV \\ \hline \textbf{Argon, Helium, Neon, Xenon} \\ c_s = 3 \ x \ 10^4 \ m/s \ (\text{Argon}) & V_{drift} = 100 \ m/s \\ V_{diamagnetic} = 10^3 \ m/s & v_{drift-wave} \sim 1 \ kHz \\ \\ \text{Connection length:} \ 10 \ m < L_{\parallel} < 2000 \ m & \tau_p \ (\text{parallel loss}) > 1 \ ms \\ \\ \text{Probe arrays in end plates provide vertical and full radial profiles} \\ \\ \text{Isolated end plates apply radial electric fields:} \ V_p \leq \pm 100 \ Volts \\ \end{array}$

Dimensionless Comparisons

Helimak SOL Transverse size ρ_s/L_n 0.05 0.2 Drift drive v_D/c_s 0.2 0.06 6x10⁻⁵ 3x10-4 β Collisionality L_c / λ_{ee} 0.1 0.02 Turbulence level $\Delta n/n$ 0.4 0.3 50 Parallel size L_c (m) 40

Density Profiles for various ECH Resonant Radii

Typical Density, Temperature, and Floating Potential Profiles

Turbulence in the Helimak

Density fluctuations $\Delta n/n \sim 0.3$, WITH

A complex phenomenology that depends on the density gradient and connection length

At short connection lengths, $L_{\parallel} < 40$ m, coherent low-frequency modes of order 200 Hz appear around the density peak. On the low field side (unfavorable curvature) in the density gradient region, the turbulence is broad-band over several kHz and propagates vertically with drift-wave characteristics.

At longer connection lengths, $L_{\parallel} > 40$ m, the spectra lose structure and approach 1/f behavior. The fluctuations in the gradient region progressively lose their drift-wave character.

Radial Profiles of Fluctuation Amplitude

Frequency Spectra

- Coherent mode near density peak
- Broad spectrum in gradient region

Density PDF

Correlation Lengths

Perpendicular correlation lengths comparable with scale lengths; small compared with plasma size

Parallel correlation length comparable with connection lengths; waves coherent over L_{II}

Cross-section

Field lines terminate on isolated end plates

Biasing one set (set 2 for data shown) with respect to others imposes radial electric field, current

Other plates and vessel grounded

Biasing drives current from + plates into plasma along field lines and out across the field lines. Some returns back out along field lines to the - plates; most flows to vessel walls.

For typical threshold currents, $\langle j_r \rangle \sim 0.1 \text{ A/m}^2$

 $j X B = dp/dt \sim p/\tau_p$

 $p = mnV_z$

For $\tau_p \sim 1$ ms, $V_{zmax} \sim 2$ km/s

Shear, $\partial v_z / \partial r \sim 10^4 \, \text{s}^{-1}$

Bias-Driven Turbulence Reduction➤ Applying bias above a threshold drives a bifurcation to a state of reduced Δn/n

 \succ The reduction occurs across much of the profile

The transition occurs without hysteresis in hundreds of milliseconds

Transitions occur for both positive and negative bias in helium and argon over a broad range

Bias experiments are limited to $L_{||} \ge 40$ m. (Short connection length requires field lines with high pitch. Not all field lines terminate on the bias plates for high pitch.)

Response to Negative Bias Probe n(t) across radial profile

Bias

Reduced Δn

Reduced Δn ; increased $\langle n \rangle$

Response to Positive Bias Probe n(t) across radial profile

Response to Negative Bias Probe n(t) across radial profile

Helium

Time History of a Bifurcation

Effects extend outward from plate, esp. negative bias

Frequency-Resolved Particle Transport

Floating Potential Profiles

Effect of Bias on Radial Cross-Correlation

Comparison of Shear with Turbulence Suppression

Density Fluctuations vs. Shear Magnitude

Density Fluctuations vs. Shear Magnitude

Auto-correlation times (~ growth rate)

Velocity shear ~ 10^4 s⁻¹ shorter than turbulence autocorrelation times ~ 0.5 ms (γ ~2x10³ s⁻¹)

Scorecard for Flow-Shear Model

- Bias + Bias

Reduced radial correlation length	YES	NO
Turbulence reduction associated with increased flow shear	NO	
Turbulence level decreases with increased flow shear*	NO	
Density fluctuations, potential fluctuations, and transport decrease together*	NO	NO

* Coupled with quasi-linear theory

Conclusions

➤ The Helimak offers a simple, controlled example of shear-flow suppression of turbulence and transport.

➤ The reductions in density fluctuations, potential fluctuations and transport are not closely related to one another

Neither turbulence reductions nor levels correlate closely with velocity shearing rate

