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Edge Plasma Region -- interface between open and closed
magnetic field lines; plays key role in tokamak performance...

Steep gradient region, L-mode and H-mode ‘pedestals’
Plasma performance tied to pedestal height

...which may be fundamental to understanding the edge pedestal

Power and particle exhaust
Width of scrape-off layer sets divertor heat fluxes 

Impurity control
Impurity ‘screening’, plasma flows, inward pinches, ...  

ELM phenomena, quasi-coherent modes, ...



Alcator
C-Mod

Edge Plasma Region -- interface between open and closed
magnetic field lines; plays key role in tokamak performance...

Steep gradient region, L-mode and H-mode ‘pedestals’
Plasma performance tied to pedestal height

...which may be fundamental to understanding the edge pedestal

Power and particle exhaust
Width of scrape-off layer sets divertor heat fluxes 

Impurity control
Impurity ‘screening’, plasma flows, inward pinches, ...  

Questions & Research Goals:

Underlying physics that sets the transport levels, gradients, SOL widths? 

ELM phenomena, quasi-coherent modes, ...

Connections among transport, plasma flows, magnetic topology, ...
(e.g. L-H power threshold) 

First-principles, predictive model for edge plasma? 
=> Some progress, but we have a long way to go...
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Strong (near-sonic) plasma flows observed just outside the LCFS

Magnetic x-point topology (LSN/USN) sets parallel flow direction 

Extreme ballooning-like radial transport asymmetries

Tokamak experiments have revealed a remarkably rich set of
edge plasma transport phenomenology...

...with evidence of close coupling among all parts

Drive mechanism for strong parallel flows

SOL imposes a toroidal rotation ‘boundary condition’ on confined plasma
Linkage: magnetic topology <=> SOL flows <=> toroidal rotation

Potential connection to the x-point dependence of the L-H 
power threshold: 

Favorable Bx∇B => co-current SOL flows => co-current rotation
   => lower L-H power threshold
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D⊥ ~ constant

... a recurrent theme, consistent with L-H power threshold observations

Edge plasma ~ a system at ‘critical gradient’ near LCFS

Electromagnetic plasma turbulence sets 'critical gradient' near LCFS
Pressure gradients 'clamped' at a            value, dependent on collisionality

Interplay between 'critical gradient' behavior and SOL flows?
L-mode: attainable value of           depends on Bx∇B direction

=> edge flows, toroidal rotation are correspondingly different

MHD

αMHD

α

New view: ∇⊥nT highly constrained!

Old view: Γ⊥ = -D⊥∇⊥n, 

Alcator
C-Mod

Tokamak experiments have revealed a remarkably rich set of
edge plasma transport phenomenology...

...with evidence of close coupling among all parts

Intermittent, bursty transport in the ‘far SOL’
Small change in LCFS gradient => large change in fluxes



Scrape-off Layer Flows



- approaching sonic speed near material surfaces, V// ~ Cs

Scrape-off layer plasma flows.... a simple phenomenon... right?

We expect some plasma flow on the open field-lines that surround a
magnetically confined plasma volume

Confined
Plasma

Scrape-off Layer
Plasma (SOL)

...consisting of flow components
   aligned along and across magnetic field lines

- V⊥ ~ ∇⊥Te /B

A picture that we might expect:

Parallel flows

Cross-field (ExB) flows within magnetic flux surfaces
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Not Simple! Scrape-off layer flow patterns in a tokamak are complex -
Near-sonic flow along field lines occurs far from material surfaces

Representative composite of parallel flow data† from JT60-U, JET, C-Mod
- Strong flows along B (M// ~ 0.5)

- Components which are both dependent
    and independent of the sign of B

†G. Matthews, J. Nucl. Mater. 137-139 (2005) 1.

- Flows are not yet simulated quantitatively by
   2-D plasma transport codes



Expanded composite picture from many tokamaks† paints consistent story --
    Near-sonic parallel flows circulate around confined plasma

=> Parallel flow pattern is independent
   of the details of divertor/wall geometry

†N. Asakura, J. Nucl. Mater. 363-365 (2007) 41.



Reciprocating Mach probe: main ion flow in the crown
is toward the inner divertor target at Mach ~ 0.5

Bx B

Strong parallel flows from low- to high-field SOL are also 
evident in DIII-D†, matching and extending original JET results
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Te ~ 10 eV:
V D+ ~ 15 km s

†M. Groth, et al., APS 2007, poster UP8.00037.



Reciprocating Mach probe: main ion flow in the crown
is toward the inner divertor target at Mach ~ 0.5

Bx B

Strong parallel flows from low- to high-field SOL are also 
evident in DIII-D†, matching and extending original JET results

†M. Groth, et al., APS 2007, poster UP8.00037.

Poloidal shift of CII against CI emission and SOL plasma
conditions put C1+ ion velocity at ~ 5-10 km/s

CI

CII

spol
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2-D imaging of
carbon ‘plumes’

Te ~ 10 eV:
V D+ ~ 15 km s

CH  injection4
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CH4 
Puff Camera

Data from C+1 "plumes"
at inner midplane location†

C+1 light,
515 nm

†D. Jablonski, et al., J. Nucl Mater. 241-243 (1997) 782.

C-Mod Gas Injection Experiments: Strong High-field Side SOL Flows, 
Closely Aligned with Magnetic Field Lines
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C-Mod Gas Injection Experiments: Strong High-field Side SOL Flows, 
Closely Aligned with Magnetic Field Lines

Plasma flow direction depends on Upper/Lower Null topology,
identical to that seen by C-Mod’s high-field side Scanning Probe 
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Plasma flow direction depends on Upper/Lower Null topology,
identical to that seen by C-Mod’s high-field side Scanning Probe 

Similar patterns of high-field side SOL flows are evident in other experiments:

Data from C+1 "plumes"
at inner midplane location†

C+1 light,
515 nm

†D. Jablonski, et al., J. Nucl Mater. 241-243 (1997) 782.

JET: Build up of inner div. carbon flakes, 13C transport experiments
DIII-D: 13C transport experiments
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C-Mod Gas Injection Experiments: Strong High-field Side SOL Flows, 
Closely Aligned with Magnetic Field Lines



Scrape-off Layer Flows

and connection to 

Ballooning-like Radial Transport Asymmetries
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     are largely driven by poloidal transport asymmetries...



near-sonic
// flows

ballooning-like
radial transport
asymmetry

Γ⊥

Cross-field transport overpopulates flux tubes on low-field side,
driving parallel flow 

These ‘transport-driven’ parallel flows circulate confined plasma 
in a helical pattern with direction that depends on X-point location

Alcator
C-Mod

Experiments indicate that Near-Sonic Flows in the High-Field SOL
     are largely driven by poloidal transport asymmetries...



near-sonic
// flows

ballooning-like
radial transport
asymmetry

Cross-field transport overpopulates flux tubes on low-field side,
driving parallel flow 

These ‘transport-driven’ parallel flows circulate confined plasma 
in a helical pattern with direction that depends on X-point location

Γ⊥

Alcator
C-Mod

Experiments indicate that Near-Sonic Flows in the High-Field SOL
     are largely driven by poloidal transport asymmetries...



Alcator
C-Mod

Experiments indicate that Near-Sonic Flows in the High-Field SOL
     are largely driven by poloidal transport asymmetries...

near-sonic
// flows

ballooning-like
radial transport
asymmetry

Γ⊥

Cross-field transport overpopulates flux tubes on low-field side,
driving parallel flow 

These ‘transport-driven’ parallel flows circulate confined plasma 
in a helical pattern with direction that depends on X-point location

The mechanism that ‘closes the circulation loop’ has not yet been 
revealed experimentally
 Cross-field fueling and/or inward ⊥ transport near inner divertor?
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Detailed experiments were performed on C-Mod to investigate the
  origins of SOL flows and their connections to magnetic topology†

Fast-scanning Langmuir-Mach probes on High- and Low-field SOLs

"Inner" 
or  

"High-Field SOL"

"Outer" 
or  

"Low-Field SOL"

†Nuclear Fusion 44 (2004) 1047.
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Detailed experiments were performed on C-Mod to investigate the
  origins of SOL flows and their connections to magnetic topology†

Ip
BT

Bx∇B

Fast-scanning Langmuir-Mach probes on High- and Low-field SOLs

†Nuclear Fusion 44 (2004) 1047.
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Investigate LSN, DN and USN magnetic topologies
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Evidence for Cross-field Transport Asymmetries....
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Near-sonic // flow from low-
to high-field side seen by Mach
probe, unless plasma is
bumped against outer limiters
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Near-sonic // flow from low-
to high-field side seen by Mach
probe, unless plasma is
bumped against outer limiters
 

LFS and TOP configs.
yield a thin high-field
SOL, like double-null
plasma

=> enhanced radial transport
    over ~30 degree poloidal
    extent, centered about the
    outer midplane

=> ratio of low-field side to
     high-field side effective
     diffusion coefficient ~ 200
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Parallel Flows Near Outer Midplane:  
 Mostly Pfirsch-Schlüter Ion Flows† plus Toroidal Rotation...
      ...‘transport-driven’ component is relatively small

Outer probe data from matched discharges
with normal and reversed Ip & BT

 

Parallel Mach numbers reverse
direction when Ip & BT reverse
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(but not identical)

Parallel Mach Number

Normal B

Reversed B

†See R.A. Pitts, et al., J. Nucl. Mater. 363-365 (2007) 505, also  N. Asakura et al., Phys. Rev. Lett. 84 (2000) 3093.

=> B-field sign dependence can be
explained by Pfirsch-Schlüter 
plus co-current toroidal rotation
contributions
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      a toroidal rotation boundary condition on the confined plasma
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V//φ V//φ

⊥ transport-driven parallel SOL flows

Ballooning-like transport leads to a helical flow
component in the SOL with net volume-averaged
toroidal momentum: co-current for lower null
(Bx∇B toward x-point), counter-current for upper null
(Bx∇B away)Bx∇B
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Experiments indicate that transport-driven SOL flows set
      a toroidal rotation boundary condition on the confined plasma

Ip
BT

V//φ V//φ

⊥ transport-driven parallel SOL flows

ΔVφΔVφ

Ip
BT

Influence on plasma rotation

Ballooning-like transport leads to a helical flow
component in the SOL with net volume-averaged
toroidal momentum: co-current for lower null
(Bx∇B toward x-point), counter-current for upper null
(Bx∇B away)

Being free to rotate in the toroidal direction, the
confined plasma can respond, acquiring a
co-current or counter-current rotation increment

Bx∇B

Bx∇B
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X-point Topology Sets Magnitude and Direction of Transport-
Driven SOL Flows => Core Plasma Rotation is Affected
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lower => double => upper-null

Central plasma toroidal rotation
correspondingly shifts more toward
counter-current direction
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X-point Topology Sets Magnitude and Direction of Transport-
Driven SOL Flows => Core Plasma Rotation is Affected

Toroidal projections of flows near
separatrix shift toward counter-current
in sequence:
lower => double => upper-null

Central plasma toroidal rotation
correspondingly shifts more toward
counter-current direction

Toroidal velocity change is largest on
inner SOL
=> suggests inner SOL flow is 
     responsible for change in rotation
     of confined plasma
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Driven SOL Flows => Core Plasma Rotation is Affected

Toroidal projections of flows near
separatrix shift toward counter-current
in sequence:
lower => double => upper-null

Central plasma toroidal rotation
correspondingly shifts more toward
counter-current direction

Toroidal velocity change is largest on
inner SOL
=> suggests inner SOL flow is 
     responsible for change in rotation
     of confined plasma
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50 km/s

ΔV

~5 mm change in x-point balance
is sufficient to reverse flows
=> consistent with scale length of
     pressure gradients near separatrix
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X-point Topology Sets Magnitude and Direction of Transport-
Driven SOL Flows => Core Plasma Rotation is Affected

Toroidal projections of flows near
separatrix shift toward counter-current
in sequence:
lower => double => upper-null

Central plasma toroidal rotation
correspondingly shifts more toward
counter-current direction

∴Transport-driven SOL flows impose boundary conditions on confined plasma

Toroidal velocity change is largest on
inner SOL
=> suggests inner SOL flow is 
     responsible for change in rotation
     of confined plasma

18 km/s

12 km/s

50 km/s

ΔV

~5 mm change in x-point balance
is sufficient to reverse flows
=> consistent with scale length of
     pressure gradients near separatrix
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Scanning
Mach Probes 

       

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.
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 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.



Alcator
C-Mod

10 00
-40

-20

0

20

40

km
 s

-1

ρ (mm)

Scanning
Mach Probes 

       

Bx∇B

Co-Current
  Velocity 

       

High-field
    SOL 

       

-20

-10

0

10

20

0 100
-40

-20

0

20

40

km
 s

-1

ρ (mm)

Co-Current
  Velocity 
 
       Low-field

    SOL

       

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†
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- Strong co-current flows in high-field SOL for Bx∇B toward X-pt

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.
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- Strong co-current flows in high-field SOL for Bx∇B toward X-pt

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.
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- Largest flow velocites are seen in the high-field SOL
- Strong co-current flows in high-field SOL for Bx∇B toward X-pt

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.
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- Toroidal flow inside separatrix tracks behavior in high-field SOL
- Largest flow velocites are seen in the high-field SOL
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       - Strong co-current flows in high-field SOL for Bx∇B toward X-pt

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†

†Physics of Plasmas 15 (2008) 056106.
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- Largest flow velocites are seen in the high-field SOL

- Low-field SOL flows affected by toroidal rotation inside separatrix
- Toroidal flow inside separatrix tracks behavior in high-field SOL
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       - Strong co-current flows in high-field SOL for Bx∇B toward X-pt

New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC†
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New edge flow measurements with forward/reversed field 
 support picture of SOL flows setting toroidal rotation BC

†Physics of Plasmas 15 (2008) 056106.

†

- SOL flows set a flow ‘boundary condition’ on the confined plasma
=> tends to spin in the co-current direction for ‘favorable’ Bx∇B

- Largest flow velocites are seen in the high-field SOL

- Low-field SOL flows affected by toroidal rotation inside separatrix
- Toroidal flow inside separatrix tracks behavior in high-field SOL

Scanning
Mach Probes 

       

Toroidal
 CXRS

       - Strong co-current flows in high-field SOL for Bx∇B toward X-pt
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“X-point toggle” experiments in C-Mod  have begun
 to reveal toroidal momentum transport in L-mode plasmas

†

Idea:

MP#405 - J.E. Rice,  E. Synakowski,  M. Greenwald,  B. LaBombard,  A. Hubbard, E.S. Marmar, S. Wolfe, S. Scott

†MP#537 - K. Marr, B. Lipschultz,  A. Ince-Cushman,  N. Smick,  J. Hughes, J. Rice,  B. Labombard,  S. Wolfe

- Switch quickly between LSN and USN 
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 to reveal toroidal momentum transport in L-mode plasmas
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“X-point toggle” experiments in C-Mod  have begun
 to reveal toroidal momentum transport in L-mode plasmas

†

Idea:

MP#405 - J.E. Rice,  E. Synakowski,  M. Greenwald,  B. LaBombard,  A. Hubbard, E.S. Marmar, S. Wolfe, S. Scott

†MP#537 - K. Marr, B. Lipschultz,  A. Ince-Cushman,  N. Smick,  J. Hughes, J. Rice,  B. Labombard,  S. Wolfe

- Switch quickly between LSN and USN 
- Follow inward propagation of ensuing momentum impulse

=> Direct evidence of x-point dependent SOL flow boundary condition 
=> Allows momentum transport studies in L-mode ....
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†Phys. Plasmas 12, 056111 (2005).

Alcator
C-Mod

New insight on how Bx∇B direction may lead to different
L-H power thresholds†: 
 Magnetic topology => SOL flows => toroidal rotation
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†Phys. Plasmas 12, 056111 (2005).
††Power threshold scaling from Int. H-mode Threshold Database, J. Snipes, et al., PPCF 42, A299 (2000).

††
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New insight on how Bx∇B direction may lead to different
L-H power thresholds†: 
 Magnetic topology => SOL flows => toroidal rotation
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†Nuclear Fusion 44, 1047 (2004).
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New insight on how Bx∇B direction may lead to different
L-H power thresholds: 
 Magnetic topology => SOL flows => toroidal rotation
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Conjecture:
Co-current rotation enhances Er outside sep.†

...leading to more favorable (enhanced?) ExB
shear layer?

- an area ripe for further investigation....
     ...shear measurements now starting in C-Mod
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New insight on how Bx∇B direction may lead to different
L-H power thresholds: 
 Magnetic topology => SOL flows => toroidal rotation

Distance Between Primary and
Secondary Separatrices (mm)
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Bx∇B away from x-pt
counter-current rot. BC
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Er
weaker
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Conjecture:

- an area ripe for further investigation....
     ...shear measurements now starting in C-Mod

Recent DIII-D results (McKee, APS 2007)
clearly show connections between
beam-driven toroidal rotation, 
L-H power threshold and poloidal
flow shear

†Nuclear Fusion 44, 1047 (2004).

Co-current rotation enhances Er outside sep.†

...leading to more favorable (enhanced?) ExB
shear layer?

- strengthens view that Bx∇B dependence
  of L-H threshold involves similar physics 



Edge Plasma --
 
  a system at ‘critical gradient’ near LCFS



Evidence from L-mode Plasmas: 
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Alcator
C-ModEdge Plasma ~ a system at ‘critical gradient’ near LCFS
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Evidence from L-mode Plasmas: 

       (2) As central density is raised, density profiles flatten in Far SOL  
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(1) A weak pedestal in the “Near SOL” is seen

(3) Fluxes through LCFS increase exponentially 
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Evidence from L-mode Plasmas: 

       (2) As central density is raised, density profiles flatten in Far SOL  

yet ‘pedestal’ density gradient changes modestly...
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(3) Fluxes through LCFS increase exponentially, 
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Flux-gradient model ~ a poor choice
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Evidence from L-mode Plasmas: 

       (2) As central density is raised, density profiles flatten in Far SOL  
(1) A weak pedestal in the “Near SOL” is seen

yet ‘pedestal’ density gradient changes modestly...

“Critical gradient” sensitive to topology?! 

       

(3) Fluxes through LCFS increase exponentially, 

|∇⊥n|crit reduced for
“unfavorable” Bx∇B?
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Alcator
C-ModEdge Plasma ~ a system at ‘critical gradient’ near LCFS
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Evidence from L- and H-mode Plasmas: 

       Coherent structures (“blobs”, “ELMs”) intermittently “peel-away”
from LCFS and freely propagate into and across Far SOL... 
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LCFS SOL

Results from Gas-Puff Imaging† (GPI) at outer midplane of C-Mod:

†J.L. Terry et al., Nucl. Fusion 45, 1321 (2005), S.J. Zweben, et al., Nucl. Fusion 44, 134 (2004).
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Results from Gas-Puff Imaging† (GPI) at outer midplane of C-Mod:

LCFS SOL

... a behavior suggestive of critical-gradient fluctuation dynamics

†J.L. Terry et al., Nucl. Fusion 45, 1321 (2005), S.J. Zweben, et al., Nucl. Fusion 44, 134 (2004).



=> Observations point to a ‘critical gradient’ phenomenon in Near SOL
H-mode physics: Exceed peeling-ballooning boundary, get ELMs 
L-mode physics?

Evidence from L- and H-mode Plasmas: 

       Coherent structures (“blobs”, “ELMs”) intermittently “peel-away”
from LCFS and freely propagate into and across Far SOL... 
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Alcator
C-ModEdge Plasma ~ a system at ‘critical gradient’ near LCFS

Results from Gas-Puff Imaging (GPI) at outer midplane of C-Mod:

LCFS SOL

... a behavior suggestive of critical-gradient fluctuation dynamics
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=
1/ 2

qΛ R
λei( )1

αMHD ~ P
B2

q2R ⊥

[1] Scott, PPCF 49 (2007) S25,  PPCF 39 (1997) 1635.

[3] Scott, Phys. Plasmas 12 (2005) 062314

[2] Xu, X.Q., et al., Nucl. Fusion 40 (2000) 731.

[4] Rogers, Drake, and Zeiler, PRL 81 (1998) 4396.

If first-principles 3-D transport simulations† are correct...
...physics of collisional edge plasma transport should
involve Electromagnetic Fluid Drift Turbulence (EMFDT)
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If first-principles 3-D transport simulations† are correct...
...physics of collisional edge plasma transport should
involve Electromagnetic Fluid Drift Turbulence (EMFDT)
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Hypothesis: ‘Critical gradient’ behavior is consequence of EMFDT,
                      combined with particle & power balance constraints
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Near SOL may naturally arise from EMFDT
combined with the range of particle/power
fluxes available in experiments
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Hypothesis: ‘Critical gradient’ behavior is consequence of EMFDT,
                      combined with particle & power balance constraints

b) Heat fluxes set by input power, 
     particle fluxes set by fueling

Edge plasma states that are accessible to experiments 
should ~map to the two-parameter 'phase-space',

Experimental Test:

a) Transport is a strong function of EMFDT 'control parameters' 
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Plasma states near separatrix are indeed found to occupy 
a well-defined region in the phase space of EMFDT† 
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Pressure gradients near the separatrix appear to clamp at 
similar values of αMHD when normalized collisionality is held fixed 

Look at pressure profile data from discharges
with      ~ 0.25, 2 mm from separatrix  

No sensitivity to toroidal field

Ip Scan:
Pressure gradients scale roughly as Ip
    => similar 
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Pressure gradients near the separatrix appear to clamp at 
similar values of αMHD when normalized collisionality is held fixed 

Look at pressure profile data from discharges
with      ~ 0.25, 2 mm from separatrix  

No sensitivity to toroidal field

Ip Scan:
Pressure gradients scale roughly as Ip
    => similar 
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αMHD
BT Scan:

=> Pressure gradient near separatrix set by a 'critical poloidal beta gradient' 

Λ
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New Experiments -- Extended Range of Currents and Fields
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EMFDT collisionality (   ) contains ‘correct’ q95 normalization... 
 edge states are ~invariant when mapped to (          ,     ) space

    =>              values look like a function of Ip
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    => Better,... but              values still look like 
         a function of Ip
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αMHDαMHD ΛWhen described by local values of             and     ,          
the ‘plasma state’ near the separatrix  is seen 
to be invariant to machine parameters (BT, Ip, ne )
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=> Strong evidence that EMFDT is setting
      the ‘critical gradient’ behavior seen in
      the Near SOL

When described by local values of             and     ,          
the ‘plasma state’ near the separatrix  is seen 
to be invariant to machine parameters (BT, Ip, ne )
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H-mode pedestals show a similar ‘critical gradient’ behavior†...
      ...peak pressure gradients scale as Ip
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H-mode pedestals show a similar ‘critical gradient’ behavior†...
      ...peak pressure gradients scale as Ip
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Despite absence of ELMs, peak pressure gradients scale as Ip , 
yielding similar values of            for the same edge collisionality 
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Pedestal gradients are ‘stiff’, unaffected by strong gas puffing
or strong cryopumping
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H-mode pedestals show a similar ‘critical gradient’ behavior†...
      ...peak pressure gradients scale as Ip

2

αMHD

Pedestal gradients are ‘stiff’, unaffected by strong gas puffing
or strong cryopumping

†[1] J. W. Hughes et al., Nucl. Fus. 47 (2007) 1057.

Despite absence of ELMs, peak pressure gradients scale as Ip , 
yielding similar values of            for the same edge collisionality 

2

=> Physics of L- and H-mode pedestals is linked
Electromagnetic plasma turbulence appears to be setting
the ‘critical gradients’ in both regimes
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Evidence (?)  that toroidal rotation affects

 ‘critical pressure gradients’ near LCFS

in L-mode discharges
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Density scans:  0.1 < n/nG < 0.5
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Can SOL flows be causing the different ‘critical gradients’?
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- Favorable Bx∇B -- enhanced            at high collisionalityαMHD
Independent of Forward/Reversed field
      => not a divertor/wall geometry effect

Highest           are coincident with increased co-current flow...
     ...corresponding to ‘favorable’ Bx∇B direction 

αMHD



- Favorable Bx∇B -- enhanced co-current flow/rotation at high collisionality
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Highest           are coincident with increased co-current flow...
     ...corresponding to ‘favorable’ Bx∇B direction 
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- Favorable Bx∇B -- enhanced co-current flow/rotation at high collisionality
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=> Connections: transport-driven SOL flows, topology, gradients, L-H threshold †

Highest           are coincident with increased co-current flow...
     ...corresponding to ‘favorable’ Bx∇B direction 

αMHD

†Phys. Plasmas 12 (2005) 056111.



- Favorable Bx∇B -- enhanced co-current flow/rotation at high collisionality
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Highest           are coincident with increased co-current flow...
     ...corresponding to ‘favorable’ Bx∇B direction 

αMHD

... a good area to focus further experimental investigations...
†Phys. Plasmas 12 (2005) 056111.

=> Connections: transport-driven SOL flows, topology, gradients, L-H threshold 
†

Underlying physics not yet revealed: flow shear? collisionality dependence?
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Tokamak experiments have revealed key attributes of edge transport
phenomena, pointing towards underlying physical processes.
  
These observations challenge the development of first-principles models.

Summary and Challenges Ahead
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Challenges for 2-D edge models and first-principles turbulence codes:

Strong (near-sonic) plasma flows outside the LCFS
with x-point topology setting parallel flow direction 

Extreme ballooning-like radial transport asymmetries

Toroidal rotation of confined plasma that depends on x-point topology
Linkage: magnetic topology <=> SOL flows <=> toroidal rotation

In order for codes/theories to be validated, they must accurately reproduce
the observed edge transport phenomenology:

Γ⊥
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phenomena, pointing towards underlying physical processes.
  
These observations challenge the development of first-principles models.
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Challenges for 2-D edge models and first-principles turbulence codes:

Strong (near-sonic) plasma flows outside the LCFS
with x-point topology setting parallel flow direction 

Extreme ballooning-like radial transport asymmetries

Toroidal rotation of confined plasma that depends on x-point topology
Linkage: magnetic topology <=> SOL flows <=> toroidal rotation

In order for codes/theories to be validated, they must accurately reproduce
the observed edge transport phenomenology:

Γ⊥

L-H transition, with x-point topology (rotation?) affecting threshold  

Summary and Challenges Ahead

Tokamak experiments have revealed key attributes of edge transport
phenomena, pointing towards underlying physical processes.
  
These observations challenge the development of first-principles models.
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Challenges for 2-D edge models and first-principles turbulence codes:

In order for codes/theories to be validated, they must accurately reproduce
the observed edge transport phenomenology:

Summary and Challenges Ahead

Edge plasma ~ a system at ‘critical gradient’ near LCFS
Intermittent, bursty transport in the ‘far SOL’
Small change in LCFS gradient => large change in fluxes
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Challenges for 2-D edge models and first-principles turbulence codes:

In order for codes/theories to be validated, they must accurately reproduce
the observed edge transport phenomenology:

Summary and Challenges Ahead

Edge plasma ~ a system at ‘critical gradient’ near LCFS

Electromagnetic plasma turbulence sets 'critical gradient' near LCFS
Pressure gradients 'clamped' at a characteristic
           value, dependent on collisionalityMHDα

Intermittent, bursty transport in the ‘far SOL’
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Challenges for 2-D edge models and first-principles turbulence codes:

In order for codes/theories to be validated, they must accurately reproduce
the observed edge transport phenomenology:

Summary and Challenges Ahead

Edge plasma ~ a system at ‘critical gradient’ near LCFS

Electromagnetic plasma turbulence sets 'critical gradient' near LCFS
Pressure gradients 'clamped' at a characteristic
           value, dependent on collisionalityMHDα

MHDα

Intermittent, bursty transport in the ‘far SOL’
Small change in LCFS gradient => large change in fluxes
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Challenges for experiments --

Continued experimental studies are clearly needed:

Summary and Challenges Ahead

Reveal mechanism(s) that ‘close the SOL 
circulation loop’

Direct evidence that electromagnetic turbulence plays role near LCFS

Magnetic fluctuation levels, (ω, k) spectra -- comparison with EM codes

Detailed studies of poloidal flow shear layer near LCFS

Γ⊥
?
?

...

How does SL change (or not) with x-point, toroidal rotation, approach
     to L-H transition, ...

Phase relationships between P and Φ -- comparison with EM codes
~ ~

What sets shear layer magnitude? (ambipolar ∇Φ, Reynolds stress,...)
What role does SL play in affecting observed ‘critical gradients’?




