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Three main topics will be
discussed (work in progress):

 Discrete shear Alfvén mode structure in 3D
configurations

* Coupled Alfvéen/sound continua for stellarators
- application to HSX observations

» Self-consistent ripple calculations for ITER
and Monte Carlo alpha confinement simulation



Motivations for 3D Alfvén mode structure
calculations (AE3D):

— Collaboration with Y. Todo (NIFS)
— Applications:
» Alpha/beam/ICRF/ECH driven AE instabilities
« Stellarators (both high R/<a> and compact)
« Tokamaks with ripple, RWM caoils, etc.
— Useful in development of reduced models
» Perturbative linear stability models
 Limited mode/particle nonlinear models
— Improve understanding of instability drive, sideband coupling effects
* more complex in 3D systems
— Optimization target function
— Useful for interpretation of experimental measurements
» Mode identification
» synthetic diagnostics

— Input for particle orbit confinement studies in presence of Alfvén
instabilities (collaborations at NIFS with Isobe, Okasabe)

— Other efforts: A. Konies, Phys. Plasmas 7 (2000) 1139.



Reduced MHD description leads to a single
shear Alfvén eigenmode equation vs. the 3
coupled equations that characterize full MHD
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Setting %:—ia) and combining equations :
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Reduced MHD shear Alfvén model [based on “Generalized reduced MHD
Equations,” by S. E. Kruger, et al., Phys. of Plasmas 5 (1998) 4169]



Variational form of 3D shear Alfvén equation:

~

 Multiply by weighting function ¢ and reduce to surface
terms plus symmetric terms:

* |nertial term:
2
p @ V(v Vo)=0® Vv Vo |- V4Vo
VA

* Bending energy term:
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 Ignoring terms (indicated in blue) that will lead to surface
integrals, this results in the following symmetric, self-

adjoint equation: o
a)_ - BV ¢ BV(P
o S5




Reduced MHD shear Alfvén model: solution method
« Solution procedure

« Galerkin method (weighted residuals with trial function = weight function)
¢ = me(p)cos(mle—nIC ) (based on stellarator symmetry)
m,l

mod e selection rules (e.q., for n=1 family):
n=1 m=0,123,...
n=-1m=12,3,...
n:1J_erp, m=12,3,...

n=-1xN_, m=123,...

efc.

Up to 200 Fourier modes have been used with 40 - 60 radial elements

p,0, = Boozer magnetic coordinates

linear
f(p)=1 or > finite element
\cubic Hermite)




The Alfvén equation is solved in p,0,{ Boozer

coordinates:
Inertial term:
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Bending energy term: PPg” +QQg® + RRg% + (PQ+ QP)g"*
+(PR + RP)g” +(QR + RQ)g*
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and P, Q, R=P, Q R with ¢ replaced by ¢



Remaining steps:

Final step: integrate inertia and bending energy terms over
plasma volume to obtain matrix equations:

_[H\/Edpdedg(...) = Ax = w°Bx

Involves convolution integrals of the form:
J\oc) j dCJ do Cos(nC m9)cos(n {—m 9)cos(n {—m 6)

Ijk

J(s0) J’dgjdesm ng — me)sm(nC me)cos(nzj m0)

Ijk

these can be done exactly/analytically

Setting coefficient of highest order p derivatives to zero leads to
continuum equation:
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[prewously studied in D. A. Spong, R. Sanchez, A. Weller, Phys.

of Plasmas 10 (3217) 2003]




Metric elements (variation on a flux surface shown here for LHD)

gep 999 gCC
L*Q &# -

gre

gPC

* Coefficients that involve these matrix elements are
calculated on a 0, grid on each surface

 This data is then Fourier transformed



NCSX (quasi-toroidal stellarator)

mode density function
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[Y. Todo, et al., Proc. Of ITC/ISHW2007]

LHD Beam-driven AE’s

« Alfvén instabilities driven by beam ions have been studied in
LHD shot #47645 [M. Osakabe, et al., Nucl. Fusion 46, S911 (2006)]

* Hole-clump pairs in the fast ion distribution are observed with the
neutral particle analyzer

« Shown to be consistent with AE3D Alfvén mode structures
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LHD gap structure

discrete
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Topics

* Discrete shear Alfvén mode structure in 3D
configurations

* Coupled Alfvén/sound continua for stellarators

Collaborators: B. Breizman, D. Brower, C. B. Deng

Coherent modes observed in HSX with Alfvénic scaling
Alfvénic activity near 50 kHz (and sometimes 70kHz) is observed
in HSX correlated with energetic electron tails

1/q = iota ~ 1.05

Frequencies sometimes intersect continua near magnetic axis
Frequency insensitive to small iota variations

Motivated inclusion of sound continua

« Self-consistent ripple calculations for ITER and
effects on alpha confinement



Solving the coupled Alfvéen-sound continuum equations (derived
by B. Breizman) provides a more complete picture of modes that
may be available for energetic particle coupling (STELLGAP)

Shear Alfvén-sound continuum (B. Breizman) Coupled sound-shear Alfvén waves
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Upward frequency shift in coupled sound-shear Alfvén continua
near magnetic axis is more consistent with HSX observations:




63.45 kHz eigenmode (at p = 0.2 surface)

Alfvénic
component

sound
component

-1.93 -0.64 0.64 1.93



52.6 kHz eigenmode (at p = 0.2 surface)

- sound and Alfvén Alfvenic
continua meet with ~ component
similar frequency and —
mode structure

0.01

sound
component _

-1.58 -0.53 ' 0.53 1.58



Topics
 Discrete shear Alfvén mode structure in 3D
configurations

* Coupled Alfvén/sound continua for stellarators

» Self-consistent ripple calculations for ITER and
effects on alpha confinement

— Free boundary VMEC equilibria including both up-
down asymmetry and TF ripple

— Allows more self-consistent study of finite 3,
Shafranov shift, diamagnetic/Pfirsh-Schluter currents
on alpha confinement than previously possible

* Y. Suzuki, Y. Nakamura, K. Kondo, “Finite beta effects on the toroidal field ripple in three-
dimensional tokamak equilibria,” Nucl. Fusion 43 (2003) 406.

« J.L.Johnson, A. H. Reiman, “Self-consistent, three-dimensional equilibrium effects on tokamak
magnetic field ripple,” Nucl. Fusion 38 (1988) 1116.

— DELTASD + VMEC + MFBE* codes will be used
modeling of alpha transport in ITER

« *E. Strumberger, P. Merkel, et al., IPP Report 5/100 (May, 2002)



View of the future: an operating ITER or DEMO will
need accurate “cradle-to-grave” modeling of alphas in
order to assure protection the first wall/divertor/PFCs

Y
birth
at
3.5 MeV

I

Alpha particle lifecycle

/Drive turbulence

-AE’s, fishbones, ICE, etc.

Get transported by =% Add to impurities
plasma turbulence - DT fuel dilution

~

Heat plasma
- but mostly electrons

k— sawteeth, NTMs, ITGs / k /

N |

Encounter edge ripple ) (Leave legacy

- escape plasma ) Iocatlt melting
. —Jp| - sputtering

Meet demise - helium

- 1st wall,divertor embrittlement

AN /




Accurate modeling of the edge region and large
numbers of simulation particles are needed to
obtain good alpha loss statistics at the 1st wall

Codes:
VMEG - 3D rippled equilibria Recent parallel scaling on Cray XT3
MFBE 10T — ——
— E. Strumberger, P. Merkel, et al., IPP Report 5/100 f DELTASD
(May, 2002) —

— Accurate magnetic field (virtual casing method)
evaluation in vacuum region between plasma and coils

— Follow alphas to their demise at the wall -> predict
localized wall heating

DELTAS5D-Magcoords
— Monte Carlo orbits in Boozer coordinates

— R.H. Fowler, J. A. Rome, J. F. Lyon, Phys. FI. 28,
(1985) 338.

DELTASD-CyISVD

— Monte Carlo orbits in VMEC and cylindrical
coordinates using SVD compression methods

— Can include islands/AE modes

10°  2x10°
particles particles

4 x10°
particles

CPU time (seconds) per orbit time step

—  “Compression of magnetohydrodynamic simulation data using A
singular value decomposition,”del-Castillo-Negrete, D., Hirshman, I : ]
S. P., Spong, D. A., D'Azevedo, E. F., JOURNAL OF I 16.384
COMPUTATIONAL PHYSICS 222, 265 (2007) procéssors

100 1000 10000

# of processors



ITER free boundary VMEC equilibria have been
calculated using a filamentary coil model:

Coil model: 18 TF's with 25 filaments |B| contours on outer flux surface
each 5 fllaments per PF (compressed color map)
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» Next step: complete connections between VMEC's external Green’s function

and ANSYS vacuum field calculation
— Allows direct incorporation of the effects of ferritic inserts, TBM'’s, finite volume coill
currents, RWM'’s etc. into VMEC equilibrium



Contours of the main n = 18 ripple harmonic have been
benchmarked against vacuum data from ANSYS:

Contours of B,_,3(R,Z) where B(R,¢,Z)=> B (R,Z)cos(ng)
ANSYS vacuum n = 18 ripple VMEC B = 2_43/0 n = 18 ripple
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At finite ’s ripple contours permeate

somewhat further into core
(i.e., ripple amplification by diamagnetic currents)

note: edge ripple(d) ~ B, -45/5~0.2-1%
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Test problem: follow slowing-down of alpha populations launched
at various flux surfaces for n(0) = 10°° m=3, T,(0) = T,(0) = 20 keV
(more realistic centrally peaked profiles show zero losses)
10,240 alphas followed for 1 second physical time
up-down symmetric ITER fixed boundary equilibrium
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Variation of losses with equilibrium <>
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Summary
* New code (AE3D) developed for Alfven spectral analysis

and mode structure calculations in stellarators
— Can calculate all or a subset of Alfvén spectrum
» Up to 8000 eigenmodes have been kept per configuration
— Mode density function vs. frequency
» Density minima associated with more open gaps
— 3D mode structure visualization

« STELLGAP code has been upgraded for Alfvén-sound
wave continua
— Regions identified where Alfvén and sound continua couple

— Application to HSX shows that minima of coupled continua is
somewhat higher in frequency

— Further experimental information needed to identify observed mode

 ITER rippled equilbria calculated with VMEC and used
for alpha loss calculations

— Self-consistent finite § 3D model including ripple
 future upgrades to include effects of ferritic steel inserts, RWM caoils, etc.

— Coupled to Monte Carlo alpha loss code (DELTASD)
— Can be extended to include turbulence/follow alphas to the 1st wall



