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Three main topics will be
discussed (work in progress):

• Discrete shear Alfvén mode structure in 3D
configurations

• Coupled Alfvén/sound continua for stellarators
- application to HSX observations

• Self-consistent ripple calculations for ITER
and Monte Carlo alpha confinement simulation



Motivations for 3D Alfvén mode structure
calculations (AE3D):

– Collaboration with Y. Todo (NIFS)
– Applications:

• Alpha/beam/ICRF/ECH driven AE instabilities
• Stellarators (both high R/<a> and compact)
• Tokamaks with ripple, RWM coils, etc.

– Useful in development of reduced models
• Perturbative linear stability models
• Limited mode/particle nonlinear models

– Improve understanding of instability drive, sideband coupling effects
• more complex in 3D systems

– Optimization target function
– Useful for interpretation of experimental measurements

• Mode identification
• synthetic diagnostics

– Input for particle orbit confinement studies in presence of Alfvén
instabilities (collaborations at NIFS with Isobe, Okasabe)

– Other efforts: A. Könies, Phys. Plasmas 7 (2000) 1139.



Reduced MHD description leads to a single
shear Alfvén eigenmode equation vs. the 3

coupled equations that characterize full MHD

Reduced MHD shear Alfvén model [based on “Generalized reduced MHD
Equations,” by S. E. Kruger, et al., Phys. of Plasmas 5 (1998) 4169]
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Variational form of 3D shear Alfvén equation:

• Multiply by weighting function       and reduce to surface
terms plus symmetric terms:

• Inertial term:

• Bending energy term:

• Ignoring terms (indicated in blue) that will lead to surface
integrals, this results in the following symmetric, self-
adjoint equation:
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Reduced MHD shear Alfvén model: solution method
• Solution procedure
•  Galerkin method (weighted residuals with trial function = weight function)
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The Alfvén equation is solved in ρ, θ, ζ  Boozer
coordinates:
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Remaining steps:

• Final step: integrate inertia and bending energy terms over
plasma volume to obtain matrix equations:

• Involves convolution integrals of the form:

•     these can be done exactly/analytically
• Setting coefficient of highest order ρ derivatives to zero leads to

continuum equation:

• [previously studied in D. A. Spong, R. Sanchez, A. Weller, Phys.
of Plasmas 10 (3217) 2003]
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Metric elements (variation on a flux surface shown here for LHD)

• Coefficients that involve these matrix elements are
calculated on a θ, ζ grid on each surface

• This data is then Fourier transformed

gρρ gθθ gζζ

gρθ gρζ gθζ



NCSX (quasi-toroidal stellarator)



Closed gap (continuum damped) mode

NCSX: Open gap mode



LHD Beam-driven AE’s
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•  Alfvén instabilities driven by beam ions have been studied in
LHD shot #47645 [M. Osakabe, et al., Nucl. Fusion 46, S911 (2006)]

• Hole-clump pairs in the fast ion distribution are observed with the
neutral particle analyzer

• Shown to be consistent with AE3D Alfvén mode structures
[Y. Todo, et al., Proc. Of ITC/ISHW2007]



LHD gap structure
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f = 43 kHz
m = 1, n = -1

f = 79.1 kHz
m = 1, n = -1





• Discrete shear Alfvén mode structure in 3D
configurations

• Coupled Alfvén/sound continua for stellarators
– Collaborators: B. Breizman, D. Brower, C. B. Deng
– Coherent modes observed in HSX with Alfvénic scaling
– Alfvénic activity near 50 kHz (and sometimes 70kHz) is observed

in HSX correlated with energetic electron tails
– 1/q = iota ~ 1.05
– Frequencies sometimes intersect continua near magnetic axis
– Frequency insensitive to small iota variations
– Motivated inclusion of sound continua

• Self-consistent ripple calculations for ITER and
effects on alpha confinement

Topics



Solving the coupled Alfvén-sound continuum equations (derived
by B. Breizman) provides a more complete picture of modes that

may be available for energetic particle coupling (STELLGAP)

Shear Alfvén only

Coupled sound-shear Alfvén waves
(color scale ∝

 blue - sound wave,
magenta - shear Alfvén wave)

GAMs

sound continua

Alfvén continua

coupled
sound/Alfvén

continua
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Upward frequency shift in coupled sound-shear Alfvén continua
near magnetic axis is more consistent with HSX observations:

shear Alfvén
only continuum

HSX primary mode

HSX satellite mode

HSX primary mode

HSX satellite mode



Alfvénic
component

63.45 kHz eigenmode (at ρ = 0.2 surface)

sound
component



ζ

52.6 kHz eigenmode (at ρ = 0.2 surface)
Alfvénic

component

sound
component

- sound and Alfvén
continua meet with
similar frequency and
mode structure



• Discrete shear Alfvén mode structure in 3D
configurations

• Coupled Alfvén/sound continua for stellarators
• Self-consistent ripple calculations for ITER and

effects on alpha confinement
– Free boundary VMEC equilibria including both up-

down asymmetry and TF ripple
– Allows more self-consistent study of finite β,

Shafranov shift, diamagnetic/Pfirsh-Schlüter currents
on alpha confinement than previously possible

• Y. Suzuki, Y. Nakamura, K. Kondo, “Finite beta effects on the toroidal field ripple in three-
dimensional tokamak equilibria,” Nucl. Fusion 43 (2003) 406.

• J. L. Johnson, A. H. Reiman, “Self-consistent, three-dimensional equilibrium effects on tokamak
magnetic field ripple,” Nucl. Fusion 38 (1988) 1116.

– DELTA5D + VMEC + MFBE* codes will be used
modeling of alpha transport in ITER

• *E. Strumberger, P. Merkel, et al., IPP Report 5/100 (May, 2002)

Topics



View of the future: an operating ITER or DEMO will
need accurate “cradle-to-grave” modeling of alphas in
order to assure protection the first wall/divertor/PFCs

birth
at

3.5 MeV

Drive turbulence
-AE’s, fishbones, ICE, etc.
Get transported by
plasma turbulence
- sawteeth, NTMs, ITGs

Heat plasma
- but mostly electrons
Add to impurities
- DT fuel dilution

Encounter edge ripple
- escape plasma
Meet demise
- 1st wall,divertor

Leave legacy
- local melting
- sputtering
- helium
embrittlement

Alpha particle lifecycle



Accurate modeling of the edge region and large
numbers of simulation particles are needed to
obtain good alpha loss statistics at the 1st wall

• VMEC - 3D rippled equilibria
• MFBE

– E. Strumberger, P. Merkel, et al., IPP Report 5/100
(May, 2002)

– Accurate magnetic field (virtual casing method)
evaluation in vacuum region between plasma and coils

– Follow alphas to their demise at the wall -> predict
localized wall heating

• DELTA5D-Magcoords
– Monte Carlo orbits in Boozer coordinates
– R. H. Fowler, J. A. Rome, J. F. Lyon, Phys. Fl. 28,

(1985) 338.
• DELTA5D-CylSVD

– Monte Carlo orbits in VMEC and cylindrical
coordinates using SVD compression methods

– Can include islands/AE modes
– “Compression of magnetohydrodynamic simulation data using

singular value decomposition,”del-Castillo-Negrete, D., Hirshman,
S. P., Spong, D. A., D'Azevedo, E. F., JOURNAL OF
COMPUTATIONAL PHYSICS 222, 265 (2007)
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ITER free boundary VMEC equilibria have been
calculated using a filamentary coil model:

Coil model: 18 TF’s with 25 filaments
each 5 filaments per PF

|B| contours on outer flux surface
(compressed color map)

• Next step: complete connections between VMEC’s external Green’s function
and ANSYS vacuum field calculation
– Allows direct incorporation of the effects of ferritic inserts, TBM’s, finite volume coil

currents, RWM’s etc. into VMEC equilibrium



Contours of the main n = 18 ripple harmonic have been
benchmarked against vacuum data from ANSYS:

> 1% > 1%

ANSYS vacuum n = 18 ripple VMEC β = 2.4% n = 18 ripple

Contours of Bn=18(R,Z)    where 
  
B(R,!,Z) = B

n
(R,Z) cos(n!)

n

"



At finite β’s ripple contours permeate
somewhat further into core

(i.e., ripple amplification by diamagnetic currents)

note: edge ripple(δ) ~ Bn=18/5 ~ 0.2 - 1%

 Contours of |Bn=18(θ,s)| for <β> = 2.4% Contours of |Bn=18(θ,s)| for <β> = 0%



Test problem: follow slowing-down of alpha populations launched
at various flux surfaces for n(0) = 1020 m-3, Ti(0) = Te(0) = 20 keV

(more realistic centrally peaked profiles show zero losses)
10,240 alphas followed for 1 second physical time

up-down symmetric ITER fixed boundary equilibrium
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Variation of losses with equilibrium <β>
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Summary
• New code (AE3D) developed for Alfven spectral analysis

and mode structure calculations in stellarators
– Can calculate all or a subset of Alfvén spectrum

• Up to 8000 eigenmodes have been kept per configuration
– Mode density function vs. frequency

• Density minima associated with more open gaps
– 3D mode structure visualization

• STELLGAP code has been upgraded for Alfvén-sound
wave continua
– Regions identified where Alfvén and sound continua couple
– Application to HSX shows that minima of coupled continua is

somewhat higher in frequency
– Further experimental information needed to identify observed mode

• ITER rippled equilbria calculated with VMEC and used
for alpha loss calculations
– Self-consistent finite β 3D model including ripple

• future upgrades to include effects of ferritic steel inserts, RWM coils, etc.
– Coupled to Monte Carlo alpha loss code (DELTA5D)
– Can be extended to include turbulence/follow alphas to the 1st wall


